В квартире "ивантеевского стрелка" изъяли фрагменты пиротехники и биты с гвоздями. "осознавал, что делает"

Помимо известных каждому семикласснику трех агрегатных состояний вещества (твердое тело, жидкость и газ), существуют и другие агрегатные состояния. Одним из них является конденсат Бозе — — состояние материи, которое достигается при температурах, близких к абсолютному нулю. В этом состоянии вещество начинает проявлять различные интересные свойства, например группа частиц ведет себя, как одиночная частица. Возможность такого состояния была предсказана в 1925 году Альбертом Эйнштейном. В 1995 году американские физики Эрик Корнелл и Карл Виман поставили эксперимент, в ходе которого получили бозе-эйнштейновский конденсат (за это открытие они в 2001 году вместе с немцем Вольфгангом Кеттерле получили Нобелевскую премию).

В своем эксперименте ученые использовали атомы металла (рубидия). А вот идея создать конденсат Бозе-Эйнштейна из других частиц, в частности фотонов, чтобы система вела себя как один «суперфотон», натолкнулась на фундаментальную проблему. Дело в том, что фотоны, хотя и обладают свойствами частиц, при охлаждении поглощались окружающими материалами, проявляя тем самым свою волновую природу.

Физикам из Боннского университета во главе с Мартином Вейтцем удалось решить эту проблему.

Причем они создали конденсат Бозе-Эйшнтейна при комнатной температуре.

В одном из описаний этой работы присутствует, например, такое словосочетание, как «маленькая сенсация». Зоран Хаджибабич из Кембриджского университета сказал New Scientist , что работа немецких ученых, которая опубликована в Nature , «замыкает круг, который теоретически начали рисовать Бозе и Эйнштейн 85 лет назад».

Volker Lannert, University of Bonn

Восхищения заслуживает и простота экспериментальной установки немецких физиков. В своем эксперименте они использовали два вогнутых зеркала высокой отражающей способности, удаленные друг от друга на расстояние 1 микрон (10 -6 метра). Зеркала были помещены в «краситель» — жидкую органическую среду красного цвета. В эту среду экспериментаторы импульсно пускали лучи зеленого лазера. Свет, многократно отражаясь от зеркал, проходил через «краситель». При этом молекулы «красителя» поглощали лазерные фотоны и переизлучали их с более низкой энергией, в желтой области видимого цвета. То есть ученые достигли в своей ловушке равновесного энергетического состояния фотонов при комнатной температуре.

«В ходе этого процесса фотоны охладились до комнатной температуры и при этом они «не потерялись», — объяснил Мартин Вейтц.

Увеличив количество фотонов в установке (для этого нужно было сделать лазер поярче), ученые добились плотности около триллиона фотонов на кубический сантиметр. При такой плотности появились фотоны, которые не могли поучаствовать в энергетическом равновесии. Эти избыточные фотоны одновременно перешли в состояние конденсата Бозе — Эйнштейна, сконденсировались в один большой «суперфотон». «Все фотоны начали идти нога в ногу», — так прокомментировал Вейтц это явление.

По сравнению с формированием конденсата Бозе — Эйнштейна из охлажденных атомов рубидия нынешний эксперимент кажется до смешного простым», — заявил Nature News Матиас Вейдемюллер из университета Фрайберга. Он считает, что методика конденсации света, предложенная немецкими учеными, может быть особенно эффективной для сбора и фокусировки солнечных лучей в солнечных батареях в пасмурную погоду, когда нет возможности собирать прямое освещение.

Кроме того, эта схема может позволить создать новые источники коротковолнового лазерного излучения, в частности рентгеновского.

Сам Вайтц считает, что работа его и коллег может помочь в дальнейшем уменьшить размеры электронных устройств, в частности компьютерных микрочипов. Это, в свою очередь, может позволить создать компьютеры нового поколения, с большей производительностью, чем нынешние.

Ну а Вольфганг Кеттерле, один из лауреатов Нобелевской премии за получение конденсата Бозе — Эйнштейна из атомов рубидия, заявил: «Когда я читаю лекции, то рассказываю студентам, почему бозе-эйнштейновский конденсат не может быть получен с использованием фотонов, чтобы показать фундаментальное различие между фотонами и атомами. Но теперь это различие исчезло».

Конденсат Бозе - Эйнштейна — пятое состояние материи

Конденсат Бозе - Эйнштейна – специфическое агрегатное состояние агрегатное состояние вещества, которая представлено по большей части бозонами в условиях сверхнизкой температуры.

Является конденсированным состояниям бозе-газа — газа, состоящего из бозонов и подчиняющемуся квантовомеханическим эффектам.

В 1924-м году индийский физик Сатьендра Нат Бозе предложил квантовую статистику для описания бозонов, частиц с целым спином, которые также были названы в честь него. В 1925-м году Альберт Эйнштейн обобщил труды Бозе, применив его статистику к системам, состоящим из атомов с целым спином. К таким атомам, например, относятся атомы Гелия-4. В отличие от фермионов, бозоны не подчиняются запрещающему принципу Паули, то есть несколько бозонов могут находиться в одном и том же квантовом состоянии.

Статистика Бозе - Эйнштейна способна описать распределение частиц с целочисленным или нулевым спином. Кроме того, эти частицы не должны взаимодействовать и должны быть тождественны, то есть неразличимы.

Конденсат Бозе - Эйнштейна

Конденсат Бозе - Эйнштейна представляет собой газ, состоящий из частиц или атомов с целым спином. Как известно, частицы способны принимать сразу несколько квантовых состояний – так называемые квантовые эффекты. Согласно работе Эйнштейна, с понижением температуры количество доступных частице квантовых состояний будет уменьшаться. Причиной этому служит то, что частицы с понижением температуры все больше будут предпочитать наименее энергетические состояния. Учитывая то, что бозоны способны одновременно находиться в одном и том же состоянии, с понижением температуры они перейдут в одно и то же состояние.

Таким образом, конденсат Бозе - Эйнштейна будет состоять из множества невзаимодействующих частиц, находящихся в одном состоянии. Примечательно, что также с понижением температуры все более будет проявляться волновая природа частиц. На выходе будем иметь одну квантово-механическую волну в макромасштабах.

Данные распределения скорости (3 вида) для газа атомов рубидия, подтверждающие открытие новой фазы вещества, конденсата Бозе-Эйнштейна. Слева: перед появлением конденсата Бозе-Эйнштейна. Центр: сразу после появления конденсата. Справа: после дальнейшего испарения, оставляя образец почти чистого конденсата.

Как получить конденсат Бозе - Эйнштейна?

Впервые данное агрегатное состояние было достигнуто в 1995-м году американскими физиками из Национального института стандартов и технологии – Эриком Корнеллом и Карлом Вименом. В эксперименте использовалась технология лазерного охлаждения, благодаря которой удалость понизить температуру образца до 20 нанокельвинов. В качестве материала для газа использовался рубидий-87, 2 тысячи атомов которого перешли в состояние конденсата Бозе - Эйнштейна. Спустя четыре месяца немецкий физик Вольфганг Кеттерле также достиг конденсата в значительно больших объемах. Таким образом ученые экспериментально подтвердили возможность достижения «пятого агрегатного состояния» в условиях сверхнизких температур, за что в 2001-м году получили Нобелевскую премию.

В 2010-м году немецкие ученые из Боннского университета под руководством Мартина Вейца получили конденсат Бозе - Эйнштейна из фотонов при комнатной температуре. Для этого использовалась камера с двумя изогнутыми зеркалами, пространство между которыми постепенно заполнялось фотонами. В некоторый момент, «запускаемые» внутрь фотоны уже не могли прийти к равновесному энергетическому состоянию, в отличие находящихся там ранее фотонов. Эти «лишние» фотоны начали конденсироваться, переходя в одно и то же наименее энергетическое состояние и образовывая тем самым пятое агрегатное состояние. То есть ученым удалось получить конденсат из фотонов при комнатной температуре, без охлаждения.

Уже к 2012-му году удалось достичь конденсат из множества других изотопов, в том числе изотопы натрия, лития, калия и др. А в 2014-м году была успешно протестирована установка для создания конденсата, которую в 2017-м году отправят на Международную космическую станцию для проведения экспериментов в условиях невесомости.

Применение конденсата

Хотя данное явление сложно представить, как и любые квантовые эффекты, подобное вещество может найти применение в широком спектре задач. Одним из примеров применения конденсата Бозе - Эйнштейна является атомный лазер. Как известно, излучение, испускаемое лазером, является когерентным. То есть фотоны такого излучения имеют одинаковую энергию, фазу и длину волны. Если же фотоны будут находиться в одном квантово-механическом состоянии, как в случае с конденсатом Бозе - Эйнштейна, то существует возможность синхронизировать данное охлажденное вещество, чтобы получить излучение для более эффективного лазера. Такой атомный лазер был создан еще в 1997-м году под руководством Вольфганга Кеттерле – одного из первых ученых, создавших конденсат.

Метод получения конденсата из фотонов, который был использован немецкими учеными в 2010-м году может найти применение в солнечной энергетике. По мнению некоторых физиков, это позволит повысить эффективность солнечных элементов в условиях пасмурной погоды.

Конденсат Бозе - Эйнштейна — графическая визуализация

Так как конденсат Бозе - Эйнштейна был получен относительно недавно, сферы его применения еще точно не определены. Однако, по мнению различных ученых, конденсат может быть полезен во многих областях, начиная от медицинского оборудования и заканчивая квантовыми компьютерами.

Теория существования сверхтекучего вещества была разработана в первой трети XX века, но получить его ученым удалось только через 70 лет.

Относительно недавно ученым удалось получить гипотетический конденсат Бозе -Эйнштейна на основе фотонов. Вряд ли обычному человеку эта новость что-то сказала, но в мире науки данное открытие считается просто уникальным. В чем суть?

Конденсат Бозе - Эйнштейна был предсказан Альбертом Эйнштейном в 1925 году на основе работ индийского физика Бозе. Конденсат — это специфическая форма вещества, его новое пятое состояние. Это не жидкость, не газ, не твердое тело и не плазма. Когда вещество принимает такую форму, в нем проявляются квантовые эффекты. Вещество становится сверхтекучим. Все его атомы двигаются согласованно. По сути, конденсат становится одной большой квантовой частицей.

Теория существования сверхтекучего вещества была разработана в первой трети XX века, но получить его ученым удалось только через 70 лет. Причина заключалась в том, что частицы вещества должны были вести себя как единая квантовая система для получения предполагаемого конденсата. Для этого их нужно было охладить до температур ниже абсолютного нуля (-273,15 градуса Цельсия) на несколько миллионных долей градуса. Такие температуры называются нанокельвины. Они более чем в миллион раз ниже температуры межзвездного пространства.

В те годы физики просто не умели добиваться столь низких температур. К тому же, большинство веществ, охлажденных до температуры абсолютного нуля начинают вести себя как жидкости. Что бы получить конденсат Бозе — Эйнштейна, вещество должно остаться «газом», то есть не потерять подвижность.

В середине 1990-х годов стало известно, что щелочные металлы натрий и рубидий при охлаждении сохраняют нужные свойства для того, что бы превратится в конденсат. Для понижения температуры атомов рубидия до требуемых сверхнизких значений исследователи использовали лазерное охлаждение вместе с охлаждением испарением.

А вот в 2010 году немецкие ученые из Боннского университета получили конденсат Бозе - Эйнштейна из фотонов уже при комнатной температуре. Как им это удалось? Для эксперимента использовалась камера с двумя изогнутыми зеркалами. Пустое пространство между ними постепенно заполнялось фотонами. В один из моментов запускаемые фотоны теряли устойчивое состояние, в отличие находящихся там ранее частиц. Такие фотоны начинали конденсироваться и переходить в пятое агрегатное состояние материи. Это означает, что ученые получили конденсат Эйнштейна – Бозе при комнатной температуре, без охлаждения.

Применять сверхтекучее вещество можно в широком спектре задач. Например, в атомном лазере. Фотоны в обычном лазере имеют одинаковую энергию, фазу и длину волны. Если же они примут состояние конденсата, то существует возможность получить излучение для более эффективной работы лазера. К тому же метод получения конденсата из фотонов может найти применение в солнечной энергетике. Это позволит в будущем повысить эффективность солнечных элементов при пасмурной погоде.

На Международной космической станции прошел первый эксперимент по охлаждению атомов. Специалистам удалось создать конденсат Бозе - Эйнштейна (КБЭ), который появляется только при экстремально низких температурах, не встречающихся на Земле, сообщает Space Daily.

В мае 2018 года к МКС была отправлена Лаборатория холодного атома (CAL), чтобы изучить процессы, происходящее с этими частицами при температурах, близким к абсолютному нулю (−273,15 °C). При помощи CAL ученые хотели замедлить движение частиц и в результате получить экзотическую форму материи, нечто среднее между газом и жидкостью, известную как конденсат Бозе-Эйнштейна.

В 2014 году инженерам Лаборатории реактивного движения NASA смогли построить камеру для охлаждения атомов до температуры близкой к абсолютному нулю. В том же году в земном прототипе CAL ученые получили конденсат. Для этого в камеру были внедрены два типа охлаждающих устройств - лазеры, которые подавляют вибрации атомов и заставляют частицы охлаждаться, и магнитная ловушка, которая отбрасывает самые «горячие» атомы и оставляет внутри себя только самые холодные и неподвижные частицы.

Однако на Земле после отключения магнитной ловушки холодные атомы притягивались “вниз” и “умирали”, то есть существовали всего лишь несколько секунд (столько времени не хватит, чтобы изучить эти атомы), в космосе же они могут “жить” гораздо больше, вплоть до двух-четырех минут, из-за того, что там нет гравитации. Именно поэтому CAL и отправили на МКС.

В конце прошлой недели, а именно 27 июля, сотрудники проекта CAL сообщили СМИ, что на Международной космической станции их установка произвела КБЭ из атомов рубидия при температуре до 100 нанокельвинов, или немного выше абсолютного нуля (−273°C). Это ниже, чем средняя температура в межгалактическом пространстве (примерно −270°C). Эксперимент проходил удаленно, управлялся специалистами с Земли.

“При таких ультрахолодных температурах поведение атомов, составляющих конденсат Бозе - Эйнштейна, весьма отличается от чего-либо на Земле. Фактически этот конденсат характеризуется как пятое состояние материи, отличимое от газов, жидкостей, твердых тел и плазмы. Примечательно, что атомы КБЭ больше походят на волны, чем на частицы” , — сообщил Роберт Шотвелл, инженер Лаборатории реактивного движения NASA.

“Холодные атомы — это долгоживущие квантовые волны-частицы, которыми можно управлять” , — объясняет физик Роберт Томпсон, участник проекта CAL. — “На этих волнах-частицах мы сможем отточить наши квантовые технологии, изучить некоторые квантовые явления, научиться делать более точные измерения силы тяжести, исследовать волновую природу самого атома” .

Волновая природа атомов обычно наблюдается только в микроскопических масштабах, но КБЭ позволяет наблюдать это явление невооруженным глазом, следовательно, его становится намного легче изучать. Все ультрахолодные атомы принимают самое низкое энергетическое состояние и одинаковую волновую идентичность, становясь неотличимыми друг от друга. Вместо облака атомов появляется один “суператом”, который можно легко исследовать без увеличительных приборов.

Конденсат Бозе - Эйнштейна

Существование КБЭ теоретически было предсказано как следствие из закона квантовой механики Альбертом Эйнштейном на основе работ индийского физика Шатьендраната Бозе в 1925 году, а спустя 70 лет был проведен первый эксперимент. В 1995 году Эрик Корнелл, Карл Виман и Вольфганг Кеттерле в Объединенном институте лабораторной астрофизики (JILA) получили первый бозе-конденсат из газа атомов рубидия, охлажденный до 170 нанокельвинов, и спустя 6 лет за эту работу были удостоены Нобелевской премии по физике.

С тех пор ученые провели десятки экспериментов с КБЭ на Земле и даже в космосе на борту некоторых ракет. Но все опыты были кратковременными и не принесли значительной пользы. Лаборатория холодного атома является первой и единственной установкой на сегодняшний день, на которой ученые могут ежедневно проводить эксперименты по получению и исследованию конденсата Бозе-Эйнштейна и добиться реальных научных результатов, способных раскрыть фундаментальные тайны Вселенной.

В будущем на CAL ученые будут работать с температурами более низкими, чем с теми, с которыми они работали на земных установках.

Нашли ошибку? Пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

БОЗЕ - ЭЙНШТЕЙНА КОНДЕНСАЦИЯ (бозе-конденсация), квантовое явление, состоящее в том, что в системе из большого числа частиц, подчиняющихся Бозе - Эйнштейна статистике (бозе-газ или бозе-жидкость), при температурах ниже вырождения температуры конечная доля всех частиц системы оказывается в состояниях с нулевым импульсом. Термин «Бозе-Эйнштейна конденсация» возник по аналогии с понятием конденсации газа в жидкость, хотя эти явления совершенно различны, так как Бозе-Эйнштейна конденсация происходит в пространстве импульсов, а распределение частиц в координатном пространстве не меняется. Теория Бозе-Эйнштейна конденсации построена А. Эйнштейном в 1925 году и развита Ф. Лондоном в 1938 году.

Поскольку Бозе-Эйнштейна конденсация происходит даже в идеальном бозе-газе, её причиной являются не взаимодействия между частицами, а свойства симметрии волновой функции, описывающей систему частиц. Для идеального бозе-газа из Бозе — Эйнштейна распределения по импульсам р следует, что в нижнем энергетическом состоянии с р = 0 при температуре Т находится N 0 = [ехp(-μ/kT) - 1] -1 частиц (μ - химический потенциал, k - постоянная Больцмана). Ниже температуры вырождения Т 0 в конденсате находится N 0 = N частиц (где N - полное число частиц), а остальные подчиняются распределению Бозе - Эйнштейна с μ = 0. При Т = 0 все частицы идеального бозе-газа находятся в конденсате.

В неидеальном газе явление Бозе-Эйнштейна конденсации сохраняется, но межчастичное взаимодействие существенно снижает число частиц в конденсате, так что даже при Т = 0 значительное число частиц остаётся в состояниях с ненулевыми импульсами.

Для подавляющего большинства газов температура вырождения очень мала, и вещество переходит в твёрдое состояние гораздо раньше, чем может наступить Бозе-Эйнштейна конденсация. Исключение составляет гелий, который в нормальных условиях при Т = 4,2 К переходит в жидкое состояние и остаётся жидкостью вплоть до самых близких к абсолютному нулю температур.

Сверхпроводимость можно рассматривать как следствие Бозе-Эйнштейна конденсации коррелированных куперовских пар электронов с противоположно направленными импульсами и спинами.

В 1990-х годах Бозе-Эйнштейна конденсация наблюдалась в опытах с парами щелочных металлов (лития, цезия и т.п.), атомы которых представляют собой бозоны (Э. Корнелл, В. Кеттерле, К. Уайман; Нобелевская премия, 2001), а в 2003 году она осуществлена на «двойках» фермионов, которые посредством воздействия внешнего магнитного поля образуют бозон.

Лит.: Хуанг К. Статистическая механика. М., 1966; Лифшиц Е. М., Питаевский Л. П. Статистическая физика. 2-е изд. М., 2000.