Тепловая смерть. Второе начало термодинамики: вечный двигатель второго рода и тепловая смерть Вселенной

Тепловая смерть Вселенной («Теплова́я смерть» Вселе́нной,)

ошибочный вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Этот вывод был сформулирован Р. Клаузиус ом (1865) на основе второго начала термодинамики (См. Второе начало термодинамики). Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии (См. Энтропия). Такое состояние соответствовало бы «Т. с.» В. Ещё до создания современной космологии (См. Космология) были сделаны многочисленные попытки опровергнуть вывод о «Т. с.» В. Наиболее известна из них флуктуационная гипотеза Л. Больцман а (1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения. Современной космологией установлено, что ошибочен не только вывод о «Т. с.» В., но ошибочны и ранние попытки его опровержения. Связано это с тем, что не принимались во внимание существенные физические факторы и прежде всего Тяготение . С учётом тяготения однородное изотермическое распределение вещества вовсе не является наиболее вероятным и не соответствует максимуму энтропии. Наблюдения показывают, что Вселенная резко нестационарна. Она расширяется, и почти однородное в начале расширения вещество в дальнейшем под действием сил тяготения распадается на отдельные объекты, образуются скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и не требуют нарушения законов термодинамики. Они и в будущем с учётом тяготения не приведут к однородному изотермическому состоянию Вселенной - к «Т. с.» В. Вселенная всегда нестатична и непрерывно эволюционирует.

Лит.: Зельдович Я. Б., Новиков И. Д., Строение и эволюция Вселенной, М.,1975.

И. Д. Новиков.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Тепловая смерть Вселенной" в других словарях:

    Гипотеза, выдвинутая Р. Клаузиусом (R. Clausius, 1865) как экстраполя ция второго начала термодинамики на всю Вселенную. Согласно Клаузиусу, энергия мира постоянна, энтропия мира стремится к максимуму. Т. е. Вселенная должна прийти в состояние… … Физическая энциклопедия

    ТЕПЛОВАЯ СМЕРТЬ ВСЕЛЕННОЙ - ошибочный вывод, сделанный в XIX в. на основе второго начала термодинамики (см.), о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после… … Большая политехническая энциклопедия

    Уильям Томсон − в 1852 году выдвинул гипотезу о ТСВ Тепловая смерть термин, описывающий конечное состояние любой замкнутой термодинамической … Википедия

    Уильям Томсон − в 1852 году открыл ТСВ Тепловая смерть термин, описывающий конечное состояние любой замкнутой термодинамической системы, и Вселенной в частности. При этом никакого направленного обмена энергией наблюдаться не будет, так как все… … Википедия

    Гипотетич. состояние мира, к к рому якобы должно привести его развитие в результате превращения всех видов энергии в тепловую и равномерного распределения последней в пространстве; в таком случае Вселенная должна прийти в состояние однородного… … Философская энциклопедия

    «Тепловая смерть Вселенной» - ошибочный вывод о том, что все виды энергии во Вселенной, в конце концов, должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы. Этот вывод … Концепции современного естествознания. Словарь основных терминов

    Ошибочный вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, к рая равномерно распределится по в ву Вселенной, после чего в ней прекратятся все макроскопич. процессы. Этот вывод был… … Физическая энциклопедия

    Сценарий Большого сжатия Будущее Вселенной вопрос, рассматриваемый в рамках физической космологии. Различными научными теориями предсказано множество возможных вариантов будущего, среди которых есть мнения как об уничтожении, так и о… … Википедия

    У этого термина существуют и другие значения, см. Конец света (значения). Гибель человечества в представлении художника (см. также … Википедия

    В космологии, Большое сжатие (англ. Big Crunch) один из возможных сценариев будущего Вселенной, в котором расширение Вселенной со временем меняется на сжатие и вселенная коллапсирует, в конце концов схлопываясь в сингулярность. Обзор … Википедия

Книги

  • Миры Ктулху , Лавкрафт Говард Филлипс. Проза Лавкрафта - идеальное отражение внутреннего мира человека в состоянии экзистенциального кризиса: космос холоден и безразличен, жизнь конечна, в словах и поступках нет никакого высшего…

Материальное единство мира проявляется в абсолютности и вечности материи, ее несотворимости и неуничтожимости. Материальное единство мира выражается в возможности превращения одних форм материи и движения в другие. В середине XIX в. был открыт фундаментальный закон природы - закон сохранения энергии. «Закон сохранения и превращения энергии устанавливает не только то, что при превращениях одних видов энергии в другие остается постоянным ее численное значение, но и то, что каждый вид энергии (электромагнитная, тепловая, механическая) обладает способностью при определенных условиях превращаться в другие ее виды. Он свидетельствует о неуничтожимости движения не только в количественном (непрекращаемость), но и в качественном отношении (безграничная способность каждой формы движения превращаться в другие)» 1 .

Казалось бы, из этого закона неизбежно вытекает следствие о вечном круговороте материи во Вселенной. В самом деле, если в Природе при всех своих изменениях материя, т.е. та реальность, из которой состоит мир, не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, и материя, ее составляющая, пребывает в вечном круговороте. Вселенная в целом всегда одна и та же - убеждение в этом в XIX в. было почти всеобщим.

Немецкий физик Р. Клаузиус и английский физик В. Томпсон (лорд Кельвин), исходя из второго закона термодинамики, предположили, что «в системе, предоставленной самой себе, рано или поздно происходит выравнивание температур, и тепловая энергия как бы деградирует в качественном отношении. Она теряет способность превращаться в другие формы энергии» . Термодинамика - раздел физики, изучающий природу тепловых процессов и различные превращения тепловой энергии. То, что тепловая энергия, как и другие виды энергии, не исчезает при своих превращениях и не возникает из ничего, есть частное выражение общего закона сохранения энергии. В такой формулировке он называется первым законом термодинамики. Второй же закон термодинамики говорит не о количестве энергии, а о ее качестве или, точнее, об обесценивании энергии.

«Распространение действия второго начала термодинамики на всю Вселенную ведет к выводу, что со временем все виды энергии перейдут в тепловую, а последняя в силу выравнивания температур потеряет способность превращаться в другие виды энергии, и Вселенная придет в состояние теплового равновесия, выход из которого естественным путем невозможен. Наступление состояния теплового равновесия будет означать тепловую смерть Вселенной. Теория тепловой смерти Вселенной не отрицает количественного сохранения энергии, но отрицает качественную неуничтожимость энергии и движения» 1 .

В ходе рассуждений о «тепловой смерти» Клаузиус ввел некоторую математическую величину, названную им энтропией. В буквальном переводе с греческого языка «энтропия» означает «обращение внутрь», т.е. замыкание в себе, «неиспользование». По существу же энтропия есть мера беспорядка в какой-либо системе тел. Чем больше беспорядок, тем больше и энтропия.

П.В. Алексеев и А.В. Панин отмечают, что «энтропия является физической величиной, характеризующей процессы превращения энергии. Согласно закону возрастания энтропии, при реальных термодинамических процессах энтропия замкнутой системы возрастает. Закон возрастания энтропии определяет течение энергетических превращений: все они в замкнутых системах происходят в одном направлении. Достижение термодинамической системой состояния с максимальной энтропией соответствует достижению состояния теплового равновесия. Это означает, что в системе, предоставленной самой себе, рано или поздно происходит выравнивание температур, и тепловая энергия как бы деградирует в качественном отношении. Она теряет способность превращаться в другие формы энергии» .

Р. Клаузиус утверждал, что найден закон Природы, дающий нам возможность уверенно заключить, что во Вселенной нет всеобщего круговорота, что она все дальше и дальше меняет свое состояние в определенном направлении и приближается таким образом к известному пределу. Немецкий физик полагал, что энергия мира постоянна, а энтропия мира стремится к максимуму.

Ошеломляющее впечатление, произведенное на естествоиспытателей XIX в. вторым законом термодинамики, было особенно сильно еще и потому, что вокруг себя в окружающей нас природе они не видели фактов, его опровергающих. Наоборот, все, казалось, подтверждало мрачные прогнозы Клаузиуса. Однако были и попытки опровержения данных прогнозов. В 1895 г. немецкий физик Л. Больцман предложил свою флуктуационную гипотезу «второго начала». Эта гипотеза исходила «из допущения, что бесконечная Вселенная уже достигла состояния термодинамического равновесия, то есть тепловой смерти. Но вследствие статистического характера принципа возрастания энтропии возможны макроскопические отклонения от состояния равновесия - флуктуации. Одну из них представляет и наблюдаемая нами область Вселенной» 1 . Однако в целом Вселенная в основном представляет безбрежный мертвый океан с некоторым количеством островков жизни, как полагал Л. Больцман.

Известные физики XX в. Л.Д. Ландау и Е.М. Лифшиц доказали, что любая замкнутая система может достичь максимальной энтропии лишь при постоянных, неизменных внешних условиях. Между тем гравитация как свойство четырехмерного пространства-времени повсюду во Вселенной весьма непостоянна. Отсюда следует, что Вселенная никогда не придет к состоянию мертвого равновесия. «Второе начало» термодинамики, по существу, утверждает необратимость всех процессов в Природе. Это означает, что Природа развивается, никогда не повторяя предшествующие состояния. Следовательно, Вселенная в том виде, в каком мы ее знаем, вышла из какого-то иного, неизвестного нам состояния материи и перейдет со временем в какие-то другие формы существования. Вполне возможно, что для таких форм нынешние, известные нам законы Природы окажутся неприменимыми. Но это вовсе не означает смерть Вселенной, а лишь завершение одного из этапов развития материи.

С точки зрения синергетики (эта теория возникла сравнительно недавно), изучающей процессы самоорганизации в сложных открытых нелинейных системах, в самой Вселенной могут присутствовать природные явления антиэнтропийного характера.

В последнее время большие дискуссии в науке вызывает антропный принцип. «Основная идея этого принципа состоит в том, что фундаментальные свойства Вселенной, значения основных физических констант и даже форма физических закономерностей тесно связаны с фактом структурности Вселенной во всех масштабах - от элементарных частиц до сверхскоплений галактик - с возможностью существования условий, при которых возникают сложные формы движения материи, жизнь и человек» .

Приведем еще одну формулировку антропного принципа, предложенную Б. Картером: «Вселенная должна быть такой, чтобы в ней на некотором этапе эволюции допускалось существование наблюдателей» . Другими словами, появление человека обусловлено самим устройством Вселенной. Приведенные две формулировки антропного принципа являются слабыми.

Существует также сильная формулировка антропного принципа: «Наблюдатели необходимы для того, чтобы сделать Вселенную существующей» . Автором данной формулировки является Дж. У ил- лер.

Пришла пора разобраться со вторым фундаментальным постулатом термодинамики, которое именуется . Второе начало не является доказуемым в рамках классической термодинамики. Его формулировки – результат обобщения опытов, наблюдений и экспериментов. Расскажем Вам о нем кратко и понятно.

В прошлой статье по термодинамике мы говорили о термодинамических системах, состоящих из большого числа частиц. Для описания подобных систем используются так называемые функции состояния .

Термодинамическая функция состояния (или термодинамический потенциал) – это функция, зависящая от нескольких независимых параметров, определяющих состояние системы. Чтобы было понятнее, приведем пример. Одна из функций состояния системы – это ее внутренняя энергия. Она не зависит от того, как именно система оказалось в данном состоянии

Еще одно понятие, с которым нужно познакомиться – это энтропия . Для понимания второго начала термодинамики энтропия очень важна. А еще это красивое слово, которое многих ставит в ступор и которым можно блеснуть в компании.

В самом общем случае, энтропия – мера хаотичности некоторой системы


Простой пример : представим, что у вас есть ящик с носками. Если все носки в ящике разбросаны и валяются вперемешку и по одному, энтропия такой системы максимальна. А если носки собраны по парам и лежат аккуратненько в рядок - минимальна.

В термодинамике, энтропия – это функция состояния термодинамической системы, которая определяет меру необратимого рассеивания энергии. Что это значит? Это значит, что какая-то часть внутренней энергии системы не может перейти в совершаемую системой механическую работу. Например, процесс преобразования теплоты в механическую работу всегда сопровождается потерями, в результате которых теплота трансформируется в другие виды энергии.

При необратимых термодинамических процессах увеличивается, а при обратимых – остается постоянной. Математическая запись энтропии (S):

Здесь дельта Q – количество теплоты, подведенное или отведенное от системы, T – температура системы, dS – изменение энтропии.

Существует несколько различных формулировок второго начала термодинамики, и вот одна из них:

Энтропия замкнутой системы возрастает при любых необратимых процессах в этой системе

Так как нас интересует именно понимание сути вещей, приведем еще одно самое простое определение:

К слову, данная формулировка второго начала термодинамики принадлежит Рудольфу Клаузиусу, который и ввел в обиход понятие энтропии .


И снова вечный двигатель

После разочарования с идеей вечного двигателя первого рода люди и не думали сдаваться. Через какое-то время был придуман вечный двигатель второго рода, работа которого основывалась на передаче тепла и не перечила закону сохранения энергии. Такой двигатель преобразует все тепло, полученное от окружающих тел, в работу. Например, в качестве его реализации предполагалось путем охлаждения океана получить огромное количество теплоты. Но к счастью до охлаждения океана и заморозки рыб дело не дошло, т.к. данная идея противоречит второму началу динамики. КПД любой машины не может быть равен единице, также как тепло не может быть преобразовано в работу полностью. Так что сколько ни старайтесь, а вечный двигатель второго рода создать невозможно, так же как и вечный двигатель первого рода.

Тепловая смерть Вселенной

После введения Рудольфом Клаузиусом понятия энтропии в 1865 году возникло множество споров, домыслов и теорий, связанных с этим понятием. Одна из них – гипотеза о тепловой смерти Вселенной , сформулированная самим Клаузиусом на основе второго начала термодинамики.

Данная теория, сформулированная Клаузиусом, гласит, что Вселенная, как любая замкнутая система, стремится к состоянию термодинамического равновесия, характеризующемуся максимальной энтропией и полным отсутствием макроскопических процессов, что в свою очередь обессмысливает привычное нам понятие времени. По Клаузиусу: «Энергия мира остается постоянной. Энтропия мира стремиться к максимуму» . Это означает, что когда Вселенная придет в состояние термодинамического равновесия, все процессы прекратятся и мир погрузиться в состояние «тепловой смерти». Температура в любой точке Вселенной будет одной и той же, более не будет каких-либо причин, способных вызвать возникновение каких бы то ни было процессов.

Концепция тепловой смерти вселенной еще в недалеком прошлом была довольно широко распространена и являлась предметом активных дискуссий. Так, в книге Джинса «Universe around us» (1932г.) можно найти следующие строки касательно тепловой смерти Вселенной: «Вселенная не может существовать вечно; рано или поздно должно наступить время, когда ее последний эрг энергии достигнет наивысшей степени на лестнице падающей полезности, и в этот момент активная жизнь Вселенной должна будет прекратиться» .


При выводе своей теории Клаузиус прибегал в своих рассуждениях к следующим экстраполяциям (приближениям):

  1. Вселенная рассматривается как замкнутая система.
  2. Эволюция мира может быть описана как смена его состояний.

Интересный факт : рассуждения о тепловой смерти позволили церкви заявить, что с научной точки зрения (в том числе и благодаря теории Клаузиуса) можно найти предпосылки, указывающие на существование бога. Так, в 1952 году на заседании «папской академии наук» папа Пий 12-й в своей речи сказал: «Закон энтропии, открытый Рудольфом Клаузиусом, дал нам уверенность, что спонтанные природные процессы всегда связаны с некоторой потерей свободной, могущей быть использованной энергии, откуда следует, что в замкнутой материальной системе в конце концов эти процессы в макроскопическом масштабе когда-то прекратятся. Эта печальная необходимость...красноречиво свидетельствует о существовании Необходимого Существа» .

Опровержение теории тепловой смерти Вселенной

Как уже отмечалось выше Клаузиусом, при выводе его теории применялись определенные экстраполяции. Сегодня несмотря на некоторые сложности можно с уверенностью сказать, что подобные выводы являются антинаучными. Дело в том, что существуют определенные границы применимости второго начала термодинамики: нижняя и верхняя . Так, второе начало термодинамики не может быть применено для описания микросистем, размеры которых сравнимы с размерами молекул, и для макросистем, состоящих из бесконечного числа частиц, т.е. для Вселенной в целом.


Собственно первым ученым, установившим статистическую природу второго начала термодинамики и противопоставившим теории тепловой смерти Вселенной так называемую флуктуационную гипотезу, был выдающийся физик-материалист Больцман. Имеет место формула Больцмана, позволяющая дать статистическое истолкование второму началу термодинамики

Здесь S – энтропия системы, k – постоянная Больцмана, P – термодинамическая вероятность состояния, определяющая число микросостояний системы, соответствующих данному макросостоянию. Согласно формуле Больцмана,

То есть термодинамическая вероятность состояния изолированной системы при всех происходящих в ней процессах не может убывать. Однако т.к. для систем, состоящих из бесконечного числа частиц, все состояния будут равновероятными, вышеописанное соотношение неприменимо ко Вселенной. В подобных системах имеют место значительные флуктуации (флуктуация – отклонение истинного значения некоторой величины от ее среднего значения), представляющие собой отклонения от второго начала термодинамики. Согласно Больцману, состояние термодинамического равновесия представляет собой лишь наиболее часто встречающееся и наиболее вероятное; наряду с этим в равновесной системе могут самопроизвольно возникнуть сколь угодно большие флуктуации. То есть во Вселенной, находящейся в состоянии термодинамического равновесия, постоянно возникают флуктуации, причем одной такой флуктуацией является та область пространства, в которой находимся мы.


Современный подход безусловно отвергает теорию тепловой смерти Вселенной. Учитывая огромный возраст Вселенной и тот факт, что она не находится в состояние тепловой смерти, можно сделать вывод о том, что во Вселенной протекают процессы, препятствующие росту энтропии, т.е. процессы с отрицательной энтропией. Однако выводам Больцмана о том, что во Вселенной преобладает состояние термодинамического равновесия, все более противоречит растущий экспериментальный материал астрономии. Материя обладает никогда не утрачиваемой способностью к концентрации энергии и превращения одних форм движения в другие. Так, например, процесс образования из рассеянной материи звезд подчиняется определенным закономерностям и не может быть сведен исключительно к случайным флуктуациям распределения энергии во Вселенной.

Дорогие друзья! Сегодня мы по возможности выяснили, какой смысл имеет понятие энтропии для второго начала термодинамики, узнали, что вечный двигатель второго рода невозможен, а также порадовались, что тепловой смерти Вселенной все-таки не случится. Мы как всегда надеемся на то, что Вам понравилась наша статья, в которой мы старались рассказать о термодинамике просто, понятно и интересно. Желаем Вам успехов в учебе и напоминаем – подсказать, помочь, проконсультировать и взять часть Вашей нагрузки на себя всегда готовы . Учитесь и живите в свое удовольствие!

Закон сохранения энергии хорошо известен: энергия не возникает и не исчезает, а может лишь превращаться в другие виды энергии или переходить от одной физической системы к другой. Во всех процессах энергии изолированной системы сохраняется. Закон сохранения энергии говорит как о количественной неуничтожимости материи и движения, так и их качественной неуничтожимости. Величиной, определяющей качество энергии, является энтропия. Понятие «энтропия» возникло в рамках термодинамики и связано с анализом тепловых процессов, оно характеризует направление протекания самопроизвольных процессов в замкнутой термодинамической системе и является мерой их необратимости. Понятие энтропии лежит в основе второго начала термодинамики, открытого в 60-е года ХIХ в. Клаузиусом, согласно которому энтропия изолированной системы постоянно возрастает. Другими словами, энтропия теплоизолированной системы всегда только увеличивается, т.е. такая система стремится к тепловому равновесию, при котором энтропия максимальна. Согласно этому закону, тепло не может само собой перейти от системы с меньшей температурой к системе с большей температурой.

Распространив второй закон термодинамики о возрастании энтропии, справедливой для замкнутых систем, на всю бесконечную Вселенную, Клаузиус пришел к выводу о тепловой смерти Вселенной. Согласно его «теории», все виды энергии превращаются в тепловую, энергия обесценивается, утрачивает способность к превращениям, а Вселенная приходит в наиболее вероятное состояние термодинамического равновесия. Энергия хотя и сохраняется количественно, но обесценивается в качественном отношении. Она теряет способность превращаться в другие виды энергии. Любые изменения и существование жизни становится невозможным.

При всей своей внешней логичности «теория» тепловой смерти ведет к парадоксальным выводам. Вселенная существует бесконечно долгое время и в принципе должна бы уже давно достичь состояния равновесия. Однако мы наблюдаем в мире существование многообразных видов энергии и движения, что с точки зрения сторонников этой «теории» является необъяснимым фактом. Выход может быть предложен двоякий: можно допустить, что наша Вселенная, либо существовала конечное время, недостаточное для достижения состояния теплового равновесия, либо она много раз достигала такого состояния, но некоторая сила время от времени выводила из него Вселенную. Оба эти предположения ведут к идее сотворения мира или вмешательства в ход физических процессов сверхъестественных сил.

Существенный вклад в критику «теории» тепловой смерти Вселенной внесли идеи Больцмана, который дал статистическое обоснование второго начала термодинамики. Он исходил из того, что бесконечная Вселенная в бесконечное время имеет вероятность, значительно отклоняющуюся от своего среднего наиболее вероятного состояния, поэтому в отдельных ограниченных областях возможны гигантские спонтанные отклонения от состояния равновесия. Только после такого отклонения (флуктуации) вступает в силу закон возрастания энтропии, снова приводящей к наиболее вероятному состоянию.


Некоторые ученые очень высоко оценили флуктуационную гипотезу Больцмана. Болгарский физик и философ А. Поликаров писал, что только больцмановская теория избавляет нас от «тепловой смерти». По мнению Я.П. Терлецкого, космологическая флуктуационная гипотеза Больцмана «впервые выразила языком физики идею о вечном кругообороте материи во Вселенной, ранее высказанную Энгельсом». Он считает, что для модели Вселенной Больцмана допущение сотворения является излишним, так как тепловая смерть – удел каждой определенной области пространства и то не на вечные времена, поскольку через достаточно большой промежуток времени возможна новая флуктуация, приводящая этот ограниченный мир вновь в неравновесное состояние. Одно из главных возражений против флуктуационной теории Больцмана, Терлецкий видит в исчезающее малой вероятности больших флуктуаций во Вселенной.

Однако не только в этом несостоятельность теории Больцмана. Она хотя и сыграла положительную роль, но по существу не решает проблемы, так как фактически предполагает состояние абсолютного равновесия, «тепловой смерти» во Вселенной, нарушаемое отдельными флуктуациями, носящими случайный характер.

Неудовлетворительность гипотезы Больцмана обычно рассматривается как свидетельство неприменимости статистических идей Больцмана к бесконечно большим объектам. Возражая против этого, российский математик И.П. Плоткин утверждает, что из статистики Больцмана логически следует не флуктуационная гипотеза, а наоборот – полное отсутствие состояния равновесия у бесконечно большой системы, т.е. не ограниченное ничем развитие Вселенной. Статистическая физика не обнаруживает у бесконечно большой системы наиболее вероятного, т.е. равновесного состояния. Вероятность повторения однажды пережитого такой системой состояния равна нулю. Каждое состояние бесконечно большой системы является, поэтому, совершенно новым и неповторимым: все состояния равновероятны.

Со времени открытия второго закона термодинамики встал вопрос о том, как согласовать вывод о возрастании энтропии в замкнутых системах (возрастание неопределенности, хаоса) с процессами самоорганизации в живой природе, с теорией Дарвина. Ведь она показала, что процесс развития растительного и животного мира характеризуется его непрерывным усложнением, нарастанием высоты организации и порядка. Живая природа почему-то стремилась прочь от термодинамического равновесия и хаоса. Налицо была явная нестыковка законов развития неживой и живой природы.

После замены модели стационарной Вселенной на развивающуюся, в которой ясно просматривалось нарастающее усложнение организации материальных объектов – от элементарных субэлементарных частиц в первые мгновения после Большого взрыва до звездных и галактических систем, - несоответствие законов стало ещё более явным. Ведь если принцип возрастания энтропии универсален, то, как же могли возникнуть такие сложные структуры? Стало ясно, что для сохранения непротиворечивости общей картины мира необходимо постулировать у материи в целом не только разрушительной, но и созидательной тенденции, Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться.

Постулат о способности материи к саморазвитию в философии был разработан достаточно давно. А вот его необходимость в фундаментальных естественных науках начала осознаваться только в последнее время. Исследования показали, что процессы самоорганизации имеют место в системах самой различной природы, в том числе и неорганической. Эти закономерности изучает синергетика теория самоорганизации.

Вряд ли среди широких слоёв населения проводились социологические опросы на тему: Чем вам интересны знания о Вселенной? Но весьма вероятно, что большинство обычных людей, которые не занимаются научными изысканиями, достижения современных учёных в области изучения Вселенной волнуют лишь в связи с одной проблемой - является ли наша Вселенная конечной и если да, то когда ожидать вселенской смерти? Однако подобные вопросы интересуют не только обывателей: вот уже почти полтора столетия споры на эту тему ведут и учёные, обсуждая теорию о тепловой смерти Вселенной.

Рост энергии ведёт к гибели?

На самом деле теория о тепловой смерти Вселенной логичным образом вытекает из термодинамики и рано или поздно должна была быть высказанной. Но она была высказана на раннем этапе современной науки, в середине XIX столетия. Суть её в том, чтобы вспомнить основные понятия и закономерности Вселенной и применить их к самой Вселенной и к происходящим в ней процессам. Итак, с точки зрения классической термодинамики можно рассматривать Вселенную как замкнутую термодинамическую систему, то есть систему, которая не обменивается энергией с другими системами.

Нет оснований полагать, рассуждают сторонники теории тепловой смерти, что Вселенная может обмениваться энергией с какой-либо внешней по отношению к ней системой, так как не существует доказательств, что есть ещё что-либо, помимо Вселенной. Тогда к Вселенной, как к любой замкнутой термодинамической системе, применимо второе начало термодинамики, являющееся одним из основных постулатов современного научного мировоззрения. Второе начало термодинамики гласит, что замкнутые термодинамические системы стремятся к наиболее вероятному равновесному состоянию, то есть к состоянию с максимальной энтропией. В случае с Вселенной это означает, что при отсутствии «каналов вывода» энергии наиболее вероятное равновесное состояние, это состояние превращение всех видов энергии в тепловую. А это означает равномерное распределение тепловой энергии по всей материи, после чего все известные макроскопические процессы во Вселенной прекратятся, Вселенная как будто будет парализована, что, разумеется, приведёт и к прекращению жизни.

Вселенная не так проста, чтобы умирать тепловой смертью

Однако расхожее мнение о том, что все учёные пессимисты и склонны рассматривать лишь самые неблагоприятные варианты, несправедливо. Как только теория тепловой смерти Вселенной была сформулирована, в научном сообществе сразу начались поиски аргументов для её опровержения. И аргументы были найдены в большом количестве. Прежде всего, и самым первым из них было мнение, что Вселенную нельзя рассматривать как систему, которая способна находиться в равновесном состоянии постоянно. Даже учитывая второе начало термодинамики Вселенная может в общем и целом достичь равновесного состояния, но отдельные её участки могут испытывать флуктуации, то есть некие выбросы энергии. Эти флуктуации и не дают запуститься процессу превращения всех видов энергии в исключительно тепловую энергию.

Другое мнение, выступающее против теории тепловой смерти, указывает на следующее обстоятельство: если бы второе начало термодинамики действительно было бы применимо ко Вселенной в абсолютной степени, то тепловая смерть уже давно наступила бы. Так как если Вселенная существует неограниченное количество времени, то накопившейся в ней энергии уже должно было хватить для тепловой смерти. Но если энергии ещё недостаточно, значит, Вселенная является нестабильной, развивающейся системой, то есть она расширяется. Следовательно, в таком случае она не может быть замкнутой термодинамической системой, так как затрачивает энергию на собственное развитие и расширение.

Наконец, современная наука оспаривает теорию тепловой смерти Вселенной с других позиций. Прежде всего это общая теория относительности , согласно которой Вселенная представляет собой систему, находящейся в переменном гравитационном поле. Из этого следует, что она нестабильна и закон возрастания энтропии, то есть установление равновесного состояния Вселенной невозможно. В конце концов, нынешние учёные сходятся в том, что познания человечества о Вселенной недостаточны для того, чтобы однозначно утверждать, что она является замкнутой термодинамической системой, то есть не имеет никаких контактов с некими внешними системами. Поэтому окончательно подтвердить или опровергнуть теорию тепловой смерти Вселенной пока что нельзя.

Александр Бабицкий