Энергия гиббса. Расчетные формулы энергии гиббса и энергии гельмгольца

Энтропия. Энергия Гиббса

Одним из важнейших вопросов химии является вопрос о возможности протекания химической реакции. Количественным критерием принципиальной осуществимости химической реакции является, в частности, характеристическая функция состояния системы, называемая энергией Гиббса (G). Прежде чем перейти к рассмотрению этого критерия, остановимся на ряде определений.

Самопроизвольные процессы. Самопроизвольными называют процессы, происходящие без подвода энергии от внешнего источника. Многие химические процессы являются самопроизвольными, например растворение сахара в воде, окисление металлов на воздухе (коррозия) и др.

Обратимые и необратимые процессы. Многие химические реакции протекают в одном направлении до полного исчерпания реагирующих веществ. Такие реакции называются химически необратимыми . В качестве примера можно привести взаимодействие натрия и воды.

Другие реакции протекают вначале в прямом направлении, а затем в прямом и обратном благодаря взаимодействию продуктов реакции. В результате образуется смесь, содержащая одновременно исходные вещества и продукты реакции. Такие реакции называют химически обратимыми. В результате химически обратимого процесса наступает истинное (устойчивое) химическое равновесие , которое характеризуется следующими признаками:

1) в отсутствие внешних воздействий состояние системы остается неизменным неограниченно долго;

2) любое изменение внешних условий приводит к изменению состояния системы;

3) состояние равновесия не зависит от того, с какой стороны оно достигнуто.

В качестве примера системы, находящейся в состоянии истинного равновесия, можно привести эквимолекулярную смесь

СО (г) + Н 2 О (г) СО 2(г) + Н 2 (г) .

Любое изменение температуры или других условий вызывает смещение равновесия, т.е. изменение состава системы.

Кроме истинных равновесий очень часто встречаются кажущиеся (ложные, заторможенные) равновесия, когда состояние системы сохраняется во времени очень долго, но небольшое воздействие на систему может привести к сильному изменению ее состояния. Примером может быть смесь водорода и кислорода, которая при комнатной температуре в отсутствие внешних воздействий может оставаться неизменной неограниченно долго. Однако достаточно ввести в эту смесь платинированный асбест (катализатор), как начнется энергичная реакция

Н 2(г) + О 2(г) = Н 2 О­ (ж) ,

ведущая к полному исчерпанию исходных веществ.

Если ввести тот же катализатор при тех же условиях в жидкую воду, то получить исходную смесь невозможно.

Энтропия. Состояние любой системы может быть охарактеризовано значениями непосредственно измеряемых параметров (р, Т и др.). Это характеристика макросостояния системы. Состояние системы может быть описано также характеристиками каждой частицы системы (атома, молекулы): координатой, частотой колебания, частотой вращения и т.д. Это характеристика микросостояния системы. Системы состоят из очень большого числа частиц, поэтому одному макросостоянию будет отвечать огромное число различных микросостояний. Это число называется термодинамической вероятностью состояния и обозначается как W .

Термодинамическая вероятность связана с другим свойством вещества – энтропией (S, Дж/(моль. К)) – формулой Больцмана

где R − универсальная газовая постоянная, а N A – постоянная Авогадро.

Физический смысл энтропии может быть пояснен следующим мысленным экспериментом. Пусть идеальный кристалл какого-либо вещества, например хлорида натрия, охлажден до абсолютного нуля температуры. В этих условиях ионы натрия и хлора, составляющие кристалл, становятся практически неподвижными, и данное макроскопическое состояние характеризуется одним единственным микросостоянием, т.е. W=1, и в соответствии с (3.13) S=0. При повышении температуры ионы начнут колебаться около положений равновесия в кристаллической решетке, число микросостояний, соответствующих одному макросостоянию, возрастает, и, следовательно, S>0.

Таким образом, энтропия является мерой неупорядоченности состояния системы. Энтропия системы увеличивается во всех процессах, сопровождающихся уменьшением упорядоченности (нагревание, растворение, испарение, реакции разложения и т.п.). Процессы, идущие с увеличением упорядоченности (охлаждение, кристаллизация, сжатие и т.п.), приводят к уменьшению энтропии.

Энтропия является функцией состояния, но в отличие от большинства других термодинамических функций возможно экспериментальное определение абсолютного значения энтропии вещества. Эта возможность основана на постулате М. Планка, согласно которому при абсолютном нуле энтропия идеального кристалла равна нулю (третий закон термодинамики).

Температурная зависимость энтропии вещества представлена качественно на рис. 3.1.

На рис. 3.1 видно, что при температуре, равной 0 К, энтропия вещества равна нулю. При повышении температуры энтропия плавно увеличивается, а в точках фазовых переходов имеет место скачкообразное увеличение энтропии, определяемое соотношением

(3.14)

где Δ ф.п S, Δ ф.п Н и Т ф.п − изменения энтропии, энтальпии и температура фазового перехода соответственно.

Энтропию вещества B в стандартном состоянии обозначают как . Для многих веществ абсолютные значения стандартных энтропий определены и приводятся в справочных изданиях.

Энтропия, так же как внутренняя энергия и энтальпия, является функцией состояния, поэтому изменение энтропии системы в процессе не зависит от его пути и определяется только начальным и конечным состояниями системы. Изменение энтропии в ходе химической реакции (3.10) может быть найдено как разность суммы энтропий продуктов реакции и суммы энтропий исходных веществ:

Понятие энтропии используется в одной из формулировок второго закона термодинамики : в изолированных системах могут самопроизвольно протекать только процессы, идущие с увеличением энтропии (ΔS>0). Под изолированными системами понимаются системы, не обменивающиеся с окружающей средой ни веществом, ни энергией. Системы, в которых протекают химические процессы, к изолированным системам не относятся, т.к. они обмениваются с окружающей средой энергией (тепловой эффект реакции) и в таких системах могут протекать процессы и с уменьшением энтропии.

SO 2(г) + 2H 2 S (г) = 3S (т) + 2Н 2 О (ж) , если стандартные энтропии оксида серы (IV), сероводорода, серы и воды составляют 248,1; 205,64; 31,88 и 69,96 Дж/(моль К) соответственно.

Решение. На основании уравнения (3.15) можно записать:

Энтропия в данной реакции уменьшается, что связано с образованием твердого и жидкого продуктов из газообразных веществ.

Пример 3.8. Не производя вычислений, определить знак изменения энтропии в следующих реакциях:

1) NH 4 NO 3(к) = N 2 O (г) + 2Н 2 О (г) ,

2) 2Н 2(г) + О 2(г) = 2Н 2 О (г) ,

3) 2Н 2(г) + О 2(г) = 2Н 2 О (ж) .

Решение. В реакции (1) 1 моль NH 4 NO 3 в кристаллическом состоянии образует 3 моль газов, следовательно, D r S 1 >0.

В реакциях (2) и (3) уменьшается как общее число молей, так и число молей газообразных веществ. Следовательно, D r S 2 <0 и D r S 3 <0. При этом уменьшение энтропии в реакции (3) больше, чем в реакции (2) , так как S о (H 2 O (ж)) < S о (H 2 O (г)).

Энергия Гиббса (изобарно-изотермический потенциал). Во многих случаях самопроизвольные процессы в природе протекают при наличии разности потенциалов, например, разность электрических потенциалов обусловливает перенос заряда, а разность гравитационных потенциалов – падение тела. Эти процессы заканчиваются при достижении минимума потенциала. Движущей силой химических процессов, протекающих при постоянных давлении и температуре, является изобарно-изотермический потенциал, называемый энергией Гиббса и обозначаемый G . Изменение энергии Гиббса в химическом процессе определяется соотношением

ΔG = ΔH –TΔS, (3.16)

где ΔG – изменение энергии Гиббса химического процесса; ΔH – изменение энтальпии химического процесса; ΔS – изменение энтропии химического процесса; Т – температура, К.

Уравнение (3.16) может быть представлено в следующем виде:

ΔH = ΔG + TΔS. (3.17)

Смысл уравнения (3.17) в том, что часть теплового эффекта реакции расходуется на совершение работы (ΔG), а часть рассеивается в окружающую среду (TΔS).

Энергия Гиббса является критерием принципиальной возможности самопроизвольного протекания реакции. Если в ходе реакции энергия Гиббса уменьшается, то процесс может протекать в данных условиях самопроизвольно:

ΔG < 0. (3.18)

Процесс в данных условиях неосуществим, если

ΔG > 0. (3.19)

Выражения (3.18) и (3.19) одновременно означают, что обратная реакция не может (3.18) или может (3.19) протекать самопроизвольно.

Реакция является обратимой, т.е. может протекать и в прямом, и в обратном направлениях, если

Уравнение (3.20) является термодинамическим условием химического равновесия.

Соотношения (3.18) –(3.20) применимы также к фазовым равновесиям, т.е. к случаям, когда в равновесии находятся две фазы (агрегатных состояния) одного и того же вещества, например лед и жидкая вода.

Энтальпийный и энтропийный факторы. Из уравнений (3.16) и (3.18) следует, что процессы могут протекать самопроизвольно (ΔG<0), если они сопровождаются уменьшением энтальпии (ΔH<0) и увеличением энтропии системы (ΔS>0). Если же энтальпия системы увеличивается (ΔH>0), а энтропия уменьшается (ΔS<0), то такой процесс протекать не может (ΔG>0). При иных знаках ΔS и ΔН принципиальная возможность протекания процесса определяется соотношением энтальпийного (ΔH) и энтропийного (ТΔS) факторов.

Если ΔН>0 и ΔS>0, т.е. энтальпийная составляющая противодействует, а энтропийная благоприятствует протеканию процесса, то реакция может протекать самопроизвольно за счет энтропийной составляющей, при условии, что |ΔH|<|TΔS|.

Если энтальпийная составляющая благоприятствует, а энтропийная противодействует протеканию процесса, то реакция может протекать самопроизвольно за счет энтальпийной составлящей, при условии, что |ΔH|>|TΔS|.

Влияние температуры на направление реакции. Температура влияет на энтальпийную и энтропийную составляющие энергии Гиббса, что может сопровождаться изменением знака энергии Гиббса этих реакций, а следовательно, и направления протекания реакций. Для ориентировочной оценки температуры, при которой происходит смена знака энергии Гиббса, можно пренебречь зависимостью ΔН и ΔS от температуры. Тогда из уравнения (3.16) следует, что изменение знака энергии Гиббса произойдет при температуре

Очевидно, что смена знака энергии Гиббса с изменением температуры возможна только в двух случаях: 1) ΔН>0 и ΔS>0 и 2) ΔН<0 и ΔS<0.

Стандартная энергия Гиббса образования – это изменение энергии Гиббса реакции образования 1 моль соединения из простых веществ, устойчивых при стандартных условиях. Энергия Гиббса образования простых веществ принимается равной нулю. Стандартные энергии Гиббса образования веществ можно найти в соответствующих справочниках.

Энергия Гиббса химической реакции. Энергия Гиббса является функцией состояния, т.е. ее изменение в процессе не зависит от пути его протекания, а определяется исходным и конечным состояниями системы. Следовательно, энергию Гиббса химической реакции (3.10) можно рассчитать по формуле

Отметим, что выводы о принципиальной возможности протекания реакции по величине Δ r G применимы только к тем условиям, для которых вычислено изменение энергии Гиббса реакции. Если условия отличаются от стандартных, то для нахождения Δ r G может быть использовано уравнение изотермы Вант-Гоффа , которое для реакции (3.10) между газами записывается как

(3.23)

а между растворенными веществами –

(3.24)

где – парциальные давления соответствующих веществ; с А, с В, с D , c E – концентрации соответствующих растворенных веществ; а, b, d, е – соответствующие стехиометрические коэффициенты.

Если реагирующие вещества находятся в стандартном состоянии, то уравнения (3.23) и (3.24) превращаются в уравнение

Пример 3.9. Установить возможность протекания реакции NH 3(г) + HCl (г) = NH 4 Cl (к) в стандартных условиях при температуре 298,15 К, используя данные по стандартным энтальпиям образования и энтропиям.

Решение. На основании первого следствия закона Гесса найдём стандартную энтальпию реакции:

; реакция экзотермическая, следовательно, энтальпийная составляющая благоприятствует протеканию реакции.

Изменение энтропии реакции рассчитаем по уравнению

Реакция сопровождается уменьшением энтропии, значит, энтропийная составляющая противодействует протеканию реакции.

Найдём изменение энергии Гиббса процесса по уравнению (3.16):

Таким образом, данная реакция может протекать самопроизвольно при стандартных условиях.

Пример 3.10. Используя данные по стандартным энтальпиям образования и энтропиям, определить, при какой температуре наступит равновесие в системе N 2(г) + 3Н 2(г) = 2NH 3(г) .

Решение. Условием равновесия системы является ΔG=0. Для этого, используя соотношение (3.21), найдем температуру, при которой ΔG=0. Вычислим стандартные энтальпию и энтропию реакции:

Энтальпийная составляющая благоприятствует, а энтропийная противодействует протеканию реакции, значит, при некоторой температуре возможна смена знака энергии Гиббса, т.е изменение направления протекания реакции.

Условие равновесия запишется следующим образом:

ΔG = ΔH –TΔS,

или, подставляя численные значения, получим

0 = - 92,38 – Т(-198,3) 10 -3 .

Следовательно, реакция будет находиться в состоянии равновесия при температуре

К.

Ниже этой температуры реакция будет протекать в прямом направлении, а выше – в обратном.

Пример 3.11. При некоторой температуре Т эндотермическая реакция А® В практически идет до конца. Определить: а) знак D r S реакции; б) знак DG реакции В ® А при температуре Т; в) возможность протекания реакции В ® А при низких температурах.

Решение. а) Самопроизвольное протекание реакции А ® В указывает, что DG<0. Поскольку DН>0, то из уравнения
DG = DH - TDS следует, что DS>0; для обратной реакции В ® А DS<0.

б) Для реакции А ® В DG<0. Следовательно, для обратной реакции при той же температуре DG>0.

в) Реакция А ® В эндотермическая (DH<0), следовательно, обратная реакция В ® А экзотермическая. При низких температурах абсолютная величина члена TDS мала, так что знак DG определяется знаком DН. Следовательно, при достаточно низких температурах протекание реакции В ® А возможно.

Пример 3.12. Рассчитать величину энергии Гиббса и определить, возможна ли реакция CO + Cl 2 ÛCOCl 2 при температуре 700 К, если константа равновесия реакции при этой температуре равна 10,83 атм -1 и парциальные давления всех компонентов одинаковы и равны единице.

Решение. Взаимосвязь D r G 0 и К р реакции А + В Û С + D дается уравнением изотермы (3.22)

При стандартных условиях, когда парциальное давление каждого реагирующего вещества равно 1 атм, это соотношение примет вид

Следовательно, реакция при Т=700 К может протекать в прямом направлении самопроизвольно.

Вопросы и задачи для самостоятельной подготовки

1. Приведите численные значения давления и температуры в международной системе единиц, а также в атмосферах, миллиметрах ртутного столба и градусах Цельсия, соответствующие стандартным и нормальным условиям.

2. Какому условию удовлетворяют функции состояния? Что определяет изменение значения функции состояния в процессе?

3. Постоянством каких параметров характеризуются изобарно-изотермический и изохорно-изотермический процессы?

4. Сформулируйте первое начало термодинамики.

5. При каких условиях тепловой эффект процесса будет: а) равен изменению энтальпии этого процесса; б) равен изменению внутренней энергии процесса?

6. Химическая реакция протекает в герметичном реакторе. Изменением какой функции состояния будет определяться тепловой эффект реакции?

7. В ходе химической реакции температура системы повышается. Является этот процесс экзотермическим или эндотермическим? Какой знак (+) или (-) имеет изменение энтальпии этого процесса?

8. Сформулируйте закон Гесса.

9. Дайте определение понятия «стандартная энтальпия образования вещества».

10. Чему равны стандартные энтальпии образования молекулярного хлора и устойчивой при температуре 298 К модификации железа α-Fe?

11. Стандартная энтальпия образования белого фосфора равна нулю, а красного– (-18,41) кДж/моль. Какая из аллотропных модификаций более устойчива при температуре 25 о С?

12. Сформулируйте 1-е следствие закона Гесса.

13. Дайте определение понятия «стандартная энтальпия сгорания вещества».

14. Как связаны между собой стандартная энтальпия образования углекислого газа и стандартная энтальпия сгорания устойчивой при Т=298 К модификации углерода – графита?

15. Приведите 3 примера самопроизвольно протекающих химических процессов.

16. Перечислите признаки химического (истинного) равновесия.

17. Приведите примеры процессов, сопровождающихся: а) увеличением энтропии; б)уменьшением энтропии.

18. Какой знак должно иметь изменение энтропии самопроизвольно протекающей реакции, если Δ r Н=0?

19. Какой знак должно иметь изменение энтропии реакции термического разложения карбоната кальция? Почему? Напишите уравнение реакции.

20. Какие термодинамические свойства участников реакции необходимо знать для решения вопроса о возможности протекания реакции?

21. Экзотермическая реакция между газами сопровождается увеличением объёма. Что можно сказать о возможности протекания такой реакции?

22. В каком из следующих случаев возможна смена направления протекания реакция при изменении температуры: а)DH<0, DS<0; б) DH>0, DS>0; в) DН<0, DS>0; г) DH>0, DS<0?


23. Найдите стандартную энтальпию реакции окисления газообразного оксида серы(IV) кислородом до газообразного оксида серы(VI). Стандартные энтальпии образования SO 2 – (-297 кДж/моль) и SO 3 – (-395 кДж/моль).

Ответ: -196 кДж.

24. Укажите знак изменения энтропии в следующих реакциях:

а)СО (Г) +Н 2(Г) =С (Т) +Н 2 О (Г) ;

б) СО 2(Г) +С (Т) =2СО (Г) ;

в)FeO (Т) +СО (Г) =Fe (Т) +CO 2(Г) ;

г)Н 2 О (Ж) =Н 2 О (Г) ;

Ответ: а)(-); б)(+); в)(~0); г) (+);д)(-).

25. Найдите стандартную энтропию реакции окисления газообразного оксида серы(IV) кислородом до газообразного оксида серы(VI). Стандартные энтропии образования SO 2 – (248 Дж/(моль К), SO 3 – (256 Дж/(моль К)), О 2­ – (205 Дж/(моль К).

Ответ: -189 Дж/К.

26. Найдите энтальпию реакции синтеза бензола из ацетилена, если энтальпия сгорания бензола составляет (-3302 кДж/моль), а ацетилена – (-1300 кДж/моль).

Ответ: - 598 кДж.

27. Найдите стандартную энергию Гиббса реакции разложения гидрокарбоната натрия. Возможно ли самопроизвольное протекание реакции при этих условиях?

Ответ: 30,88 кДж.

28. Найдите стандартную энергию Гиббса реакции 2Fe (Т) +3Н 2 О (Г) =Fe 2 O 3(Т) +3Н 2(Г) (реакции коррозии углеродистой стали водяным паром). Возможно ли самопроизвольное протекание реакции при этих условиях?

Ответ: -54,45кДж.

29. При какой температуре наступит химическое равновесие в системе 2NO (г) + О 2(г) Û 2NО 2 (г) ?

Ответ: 777 К.

30. Найдите тепловой эффект процесса испарения 1 г воды (удельная теплота испарения) при температуре 298 К, если стандартная энтальпия образования Н 2 О (ж) составляет (-285,84 кДж/моль),а газообразной– (-241,84 кДж/моль).

Ответ: 2,44 кДж/г.

3.4.Задания для текущих и промежуточных контролей

Раздел I

1. Процесс образования диоксида углерода при сжигании графита в кислороде может протекать двумя путями:

I. 2C (гр) +О 2(г) = 2СО (г) ; 2CO (г) + О 2 = 2СО 2(г) , D r Н° = -566 кДж.

II. C (гр) + О 2(г) = СО 2(г) , D r Н° = -393 кДж.

Найдите D f H°(CO).

Ответ: -110 кДж/моль.

2. Рассчитайте энтальпию образования и энтальпию сгорания монооксида углерода (СО), исходя из приведенных ниже реакций:

I. 2С (гр) + О 2(г) = 2СО (г) , D r Н° = -220 кДж.

II. 2СО (г) + О 2(г) = 2СО 2(г) , D r Н° = -566 кДж.

Ответ: -110 кДж/моль; -283 кДж/моль.

3. Найдите стандартную энтальпию образования сульфита натрия из термохимического уравнения

4Na 2 SO 3(кр) = 3Na 2 SO 3(кр) + Na 2 S (кр) – 181,1 кДж,

если кДж/моль и кДж/моль.

Ответ: -1090 кДж/моль.

4. Найдите стандартную энтальпию сгорания метана, исходя из реакции СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г) , D r Н°= -802 кДж.

Ответ: -802 кДж/моль.

5. Предскажите, положительным или отрицательным будет

изменение энтропии системы в реакциях:

а) Н 2 О (ж) ® Н 2 О (г) (при температуре 25 °С);

б) СаСО 3(т) ® СаО (т) + СО 2(г) ;

в) N 2(г) + 3Н 2(г) = 2NH 3(г) ;

г) N 2(г) + О 2(г) = 2NO (г) ;

д) Ag + (р-р) + Cl - (р-р) = AgCl (т) .

Дайте объяснения, не производя расчетов.

Ответ: а) +; б) +; в) -; г) ~0; д) -.

6. Предскажите знак DS системы в каждом из следующих

процессов:

а) испарение 1 моль CCl 4(ж) ;

б) Br 2(г) → Br 2(ж) ;

в) осаждение AgCl(т) при смешении NaCl(водн.) и AgNO 3 (водн.).

Дайте объяснения.

Ответ: а) +; б) -; в)-.

7. Пользуясь табличными значениями абсолютных значений энтропий веществ при стандартных условиях (S°), сравните значения абсолютных энтропий веществ при температуре 298 К в каждой из перечисленных ниже пар:

а) О 2(г) и О 3(г) ;

б) С(алмаз) и С(графит);

в) NaCl (т) и MgCl 2(т) .

Объясните причину различия S° в каждом случае.

8. Вычислите D r S° для реакций

а) N 2(г) + 3Н 2(г) = 2NH 3(г) ; б) 2SO 2(г) + О 2(г) = 2SO 3(г) ,

используя табличные значения абсолютных энтропий веществ при стандартных условиях.

Ответ: а) -197,74 Дж/К; б) -188,06 Дж/К.

9. Пользуясь табличными значениями абсолютных эн-

тропий (S°), вычислите D r S° для следующих процессов:

а) СО (г) + 2Н 2(г) = СН 3 ОН (г) ;

б) 2НСl (г) + Br 2(ж) = 2HBr (г) + Cl 2(г) ;

в) 2NO 2(г) = N 2 O 4(г) .

Согласуется ли в каждом случае знак величины D r S° с тем, который следует ожидать на основе качественных представлений? Ответы объясните.

Ответ: а) -218,83 Дж/К; б) 94,15 Дж/К; в) -175,77 Дж/К.

10. Стандартная энтальпия образования СО (г) составляет -110,5 кДж/моль. При сгорании 2 моль СО (г) выделилось 566 кДж теплоты. Вычислите

Ответ: -393,5 кДж/моль.

11. Определите количество теплоты, выделяющееся при гашении 100 кг извести водой: CaO (к) + H 2 O (ж) = Ca(OH) 2(к) , если стандартные теплоты образования CaO (к) , H 2 O (ж) , Ca(OH) 2(к) равны соответственно -635,14; -285,84; -986,2 кДж/моль.

Ответ: -1165357,2 кДж.

12. Определите энтальпию разложения пероксида водорода (Н 2 О 2) на воду и кислород, используя нижеприведенные данные:

SnCl 2(р) + 2НCl (p) + H 2 O 2(p) = SnCl 4(p) + 2H 2 O (ж) , D r Н°=-393,3 кДж;

SnCl 2(р) + 2HCl (p) + 1/2O 2(г) = SnCl 4(p) + H 2 O (ж) , D r Н°=-296,6 кДж.

Ответ: - 96,7 кДж.

13. Вычислите количество теплоты, которое выделяется при производстве 10 6 кг аммиака в сутки, если

Ответ: -2,7 . 10 9 кДж.

14. Определите , исходя из следующих данных:

Р 4(кр) + 6Cl 2(г) = 4РСl 3(ж) , D r Н° = -1272,0 кДж;

PCl 3(ж) + Cl 2(г) = PCl 5(кр) , D r Н° = -137,2 кДж.

Ответ: -455,2 кДж/моль.

15. Вычислите изменение энтальпии реакции при стандартных условиях: Н 2(г) + 1/3О 3(г) = Н 2 О (г) , исходя из следующих данных:

2О 3 (г)=3О 2 (г), D r Н°=-288,9 кДж,

кДж/моль.

Ответ: -289,95 кДж.

16. Рассчитайте стандартную энтальпию реакции образования PbO, используя следующие данные:

1) 2Pb (кр) +О 2(г) =2PbO 2(кр) – 553,2 кДж;

2) 2PbO 2(кр) = 2PbO (кр)) +О 2(г) + 117,48 кДж.

Ответ: -217,86 кДж/моль.

17. Рассчитайте стандартную энтальпию реакции образования CuCl, используя следующие данные:

1) CuCl 2(кр) +Cu (кр) =2 CuCl (кр) – 63,5 кДж;

2) Cu (кр) + Cl 2(г) = CuCl 2(кр) – 205,9 кДж.

Ответ: 134,7 кДж/моль.

18. Вычислите Δ f H° метилового спирта в жидком состоянии, зная следующие данные:

Н 2(г) + 1/2О 2(г) = Н 2 О (ж) , D r Н° = -285,8 кДж;

С (гр) + О 2(г) = СО 2(г) , D r Н° = -393,7 кДж;

СН 3 ОН (ж) + 3/2О 2(г) = СО 2(г) + 2Н 2 О (ж) , D r Н° = -715,0 кДж.

Ответ: -250,3 кДж/моль.

19. Стандартные энтальпии сгорания бензола и ацетилена равны соответственно -3270 и -1302 кДж/моль. Определите D r H° превращения ацетилена в бензол: 3С 2 Н 2(г) = С 6 Н 6(г) .

Ответ: -636 кДж.

20. Определите стандартную энтальпию образования оксида железа (III), если при окислении 20 г железа выделилось 146,8 кДж теплоты.

Ответ: -822 кДж/моль.

21. Вычислите количество теплоты, которое выделяется при получении 22,4 л аммиака (н.у.), если

N 2(г) + 3Н 2(г) = 2NH 3(г) , D r Н° = -92 кДж.

Ответ: -46 кДж.

22. Определите Δ f H° этилена, используя следующие дан

С 2 Н 4(г) + 3О 2(г) = 2СО 2(г) + 2Н 2 О (г) -1323 кДж;

С (гр) + О 2(г) = СО 2(г) -393,7 кДж;

Н 2(г) +1/2О 2(г) =Н 2 О (г) -241,8 кДж.

Ответ: 52 кДж/моль.

23.Рассчитайте энтальпию реакции F (г) +Li (г) =F - (г) + Li + (г) ,

если F (г) + е = F - (г) -322 кДж/моль;

Li (г) = Li + (г) + е +520 кДж/моль.

Ответ: 198 кДж.

24. Рассчитайте стандартную энтальпию реакции образования Hg 2 Br 2 , используя следующие данные:

1) HgBr 2(кр) + Hg (ж) = Hg 2 Br 2 (кр) – 37,32 кДж;

2) HgBr 2 (кр) = Hg (ж) + Br 2(ж) +169,45 кДж.

Ответ: -206,77 кДж/моль.

25. Рассчитайте стандартную энтальпию реакции образования гидрокарбоната натрия, используя следующие данные:

2NaНСO 3(кр) = Na 2 СO 3(кр) + СО 2(г) +Н 2 О (г) + 130,3 кДж,

если кДж/моль;

С (гр) +О 2(г) =СО 2(г) – 393,7 кДж; Н 2(г) +1/2О 2(г) =Н 2 О (г) -241,8 кДж.

Ответ: -947,4 кДж/моль.

26. Рассчитайте стандартную энтальпию реакции образования СaСO 3(кр) , используя следующие данные:

Ca(OH) 2(к) + СО 2(г) = СaСO 3(кр) +173,9 кДж;

С (гр) +О 2(г) =СО 2(г) – 393,7 кДж;

кДж/моль.

Ответ: -1206 кДж/моль.

27. Определите стандартную энтальпию образования оксида железа (III), если при реакции

2Fe + Al 2 O 3 = Fe 2 O 3 + 2Al

на каждые 80 г Fe 2 O 3 поглощается 426,5 кДж теплоты, кДж/моль.

Ответ: -823 кДж/моль.

28. Какое количество теплоты необходимо затратить для получения 11,2 кг железа, если в соответствии с термохимическим уравнением FeO (т) + Н 2(г) = Fe (т) + Н 2 О (г) + 23 кДж.

Ответ: 4600 кДж.

29. Найдите теплоту сгорания алмаза, если стандартная теплота сгорания графита составляет -393,51 кДж/моль, а тепло-

та фазового перехода С(графит) ® С(алмаз) составляет

1,88 кДж/моль.

Ответ: -395,39 кДж/моль.

30. Какое количество теплоты выделяется при превращении 1 кг красного фосфора в черный фосфор, если известно,

что стандартные энтальпии образования красного и чёрного фосфора составляют -18,41 и -43,20 кДж/моль соответственно.

Ответ: -800 кДж.

Раздел II

Вычислите стандартное изменения энергии Гиббса химической реакции при температуре 25 °С по значениям стандартных энтальпий образования и абсолютных энтропий химических соединений и установите возможность самопроизвольного протекания реакции:

1. 4NH 3г + 5O 2г = 4NO г + 6H 2 O г.

Ответ: -955,24 кДж; реакция возможна.

2. SO 2г + 2H 2 S г = 3S к + 2H 2 O ж.

Ответ: -107,25 кДж; реакция возможна.

3. 2H 2 S г + 3O 2г = 2H 2 O г + 2SO 2г.

Ответ: -990,48 кДж; реакция возможна.

4. 2NO г + O 3г + H 2 O ж = 2HNO 3ж.

Ответ: - 260,94 кДж; реакция возможна.

5. 3Fe 2 O 3к + CO г = 2Fe 3 O 4к + CO 2г.

Ответ: - 64,51 кДж; реакция возможна.

6. 2СН 3 ОН ж + 3О 2г = 4Н 2 О г + 2СО 2г.

Ответ: - 1370,46 кДж; реакция возможна.

7. СН 4г + 3СО 2г = 4СО г + 2Н 2 О г.

Ответ: 228,13 кДж; реакция невозможна.

8. Fe 2 O 3к + 3CO г = 2Fe к + 3CO 2г.

Ответ: -31,3 кДж; реакция возможна.

9. С 2 Н 4г + 3О 2г = 2СО 2г + 2Н 2 О г.

Ответ: -1313,9 кДж; реакция возможна.

10. 4NH 3г + 3O 2г = 6H 2 O г + 2N 2г.

Ответ: -1305,69 кДж; реакция возможна.

11. 4NO 2г + O 2г + 2H 2 O ж = 4HNO 3ж.

Ответ: -55,08 кДж; реакция возможна.

12. 2HNO 3ж + NO г = 3NO 2г + H 2 O ж.

Ответ: -7,71 кДж; реакция возможна.

13. 2С 2 Н 2г + 5О 2г = 4СО 2г + 2Н 2 О г.

Ответ: -2452,81 кДж; реакция возможна.

14. Fe 3 O 4к + 4H 2г = 3Fe к + 4H 2 O г.

Ответ: 99,7 кДж; реакция невозможна.

15. 2Fe 2 O 3к + 3C к = 4Fe к + 3СО 2г.

Ответ: 297,7 кДж; реакция невозможна.

16. Fe 3 O 4к + 4CO г = 3Fe к + 4CO 2г.

Ответ: -14,88 кДж; реакция возможна.

17. 2H 2 S г + O 2г = 2H 2 O ж + 2S к.

Ответ: -407,4 кДж; реакция возможна.

18. Fe 2 O 3к + 3H 2г = 2Fe к + 3H 2 O г.

Ответ: 54,47 кДж; реакция невозможна.

Вычислите стандартное изменение энергии Гиббса химической реакции при температуре 25 °С по значениям стандартных энтальпий образования и абсолютных энтропий химических соединений и определите, при какой температуре наступит равновесие в системе.

19. 4HCl г + O 2г ↔ 2Cl 2г + 2H 2 O ж.

Ответ: -93,1 кДж; ~552 К.

20. Cl 2г + 2HI г ↔ I 2к + 2HCl г.

Ответ: -194,0 кДж; ~1632 К.

21. SO 2г + 2CO г ↔ 2CO 2г + S к.

Ответ: -214,24 кДж; ~1462 К.

22. СН 4г + 2Н 2 О г ↔ СО 2г + 4Н 2г.

Ответ: 113,8 кДж; ~959 К.

23. СО г + 3Н 2г ↔ СН 4г + Н 2 О г.

Ответ: -142,36 кДж; ~ 963 К.

Вычислите изменение энергии Гиббса химической реакции при температуре 350 °С по значениям стандартных энтальпий образования и абсолютных энтропий химических соединений. Температурной зависимостью D f H° и S° пренебречь. Установите возможность самопроизвольного протекания реакций:

24. 2РН 3г + 4О 2г = Р 2 О 5к + 3Н 2 О г.

Ответ: 1910,47 кДж; реакция возможна.

25. Cl 2 г + SO 2 г + 2H 2 O ж = H 2 SO 4 ж + 2HCl г.

Ответ: -80,0 кДж; реакция возможна.

26. Р 2 О 5к + 5С к = 2Р к + 5СО г.

Ответ: 860,0 кДж; реакция невозможна.

27. 2CO г + SO 2г = S к + 2CO 2г.

Ответ: -154,4 кДж; реакция возможна.

28. СО 2г + 4Н 2г = СН 4г + 2Н 2 О г.

Ответ: -57,9 кДж; реакция возможна.

29. NO г + O 3г = O 2г + NO 2г.

Ответ: -196,83 кДж; реакция возможна.

30. СН 4г + 2О 2г = СО 2г + 2Н 2 О г.

Ответ: -798,8 кДж; реакция возможна.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH ), и энтропийным T ΔS , обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G , кДж):

При ΔG G = 0, при котором наступает равновесное состояние обратимого процесса; ΔG > 0 указывает на то, что процесс термодинамически запрещен (рис. 4.4).

Рисунок 4.4.

Изменение энергии Гиббса: а – обратимый процесс; б – необратимый процесс.

Записав уравнение (4.2) в виде ΔH = ΔG + T ΔS , получим, что энтальпия реакции включает свободную энергию Гиббса и «несвободную» энергию ΔS · T . Энергия Гиббса, представляющая собой убыль изобарного (P = const) потенциала, равна максимальной полезной работе. Уменьшаясь с течением химического процесса, ΔG достигает минимума в момент равновесия (ΔG = 0). Второе слагаемое ΔS · T (энтропийный фактор) представляет ту часть энергии системы, которая при данной температуре не может быть превращена в работу. Эта связанная энергия способна лишь рассеиваться в окружающую среду в виде тепла (рост хаотичности системы).

Итак, в химических процессах одновременно изменяются энергетический запас системы (энтальпийный фактор) и степень ее беспорядка (энтропийный фактор, не совершающая работу энергия).

Анализ уравнения (4.2) позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH ) или энтропийный (ΔS · T ).

  • Если ΔH S > 0, то всегда ΔG
  • Если ΔH > 0 и ΔS G > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.
  • В остальных случаях (ΔH S H > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и T ΔS . Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение T ΔS также невелико, и обычно изменение энтальпии больше T ΔS . Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше T ΔS , и даже эндотермические реакции становятся осуществляемыми.

Проиллюстрируем эти четыре случая соответствующими реакциями:

ΔH ΔS > 0
ΔG

C 2H 5–O–C 2H 5 + 6O 2 = 4CO 2 + 5H 2O
(реакция возможна при любой температуре)

ΔH > 0
ΔS ΔG > 0

реакция невозможна

ΔH ΔS ΔG > 0, ΔG

N 2 + 3H 2 = 2NH 3 (возможна при низкой температуре)

ΔH > 0
ΔS > 0
ΔG > 0, ΔG

N 2O 4(г) = 2NO 2(г) (возможна при высокой температуре).

Для оценки знака ΔG реакции важно знать величины ΔH и ΔS наиболее типичных процессов. ΔH образования сложных веществ и ΔH реакции лежат в пределах 80–800 кДж∙. Энтальпия реакции сгорания всегда отрицательна и составляет тысячи кДж∙. Энтальпии фазовых переходов обычно меньше энтальпий образования и химической реакции Δ – десятки кДж∙, Δ и Δ равны 5–25 кДж∙.

Зависимость ΔH от температуры выражается соотношением ΔH T = ΔH ° + ΔC p · ΔT , где ΔC p – изменение теплоемкости системы. Если в интервале температур 298 К – Т реагенты не претерпевают фазовых превращений, то ΔC p = 0, и для расчетов можно пользоваться значениями ΔH °.

Энтропия индивидуальных веществ всегда больше нуля и составляет от десятков до сотен Дж∙моль –1K –1 (табл. 4.1). Знак ΔG определяет направление реального процесса. Однако для оценки осуществимости процесса обычно пользуются значениями стандартной энергии Гиббса ΔG °. Величина ΔG ° не может использоваться в качестве критерия вероятности в эндотермических процессах со значительным возрастанием энтропии (фазовые переходы, реакции термического разложнения с образованием газообразных веществ и др.). Такие процессы могут быть осуществлены за счет энтропийного фактора при условии

Задачи и тесты по теме "Химическая термодинамика. Энергия Гиббса"

  • Химические элементы. Знаки химических элементов - Первоначальные химические понятия и теоретические представления 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

Одной из важнейших задач, решаемых термодинамикой, является установление принципиальной возможности (или невозможности) самопроизвольного протекания химического процесса.

Как указывалось ранее, протеканию химического процесса благоприятствует повышение энтропии системы. Повышение энтропии достигается разобщением частиц, разрывом химических связей, разрушением кристаллических решеток, растворением веществ и т.д. Однако все эти процессы неизбежно сопровождаются повышением энтальпии системы, что препятствует протеканию процесса. Очевидно, что для решения вопроса о принципиальной возможности протекания химического процесса необходимо одновременно учесть изменение и энтропии, и энтальпии системы. При постоянной температуре и давлении для этой цели используется термодинамическая функция, называемая свободной энергией Гиббса (иногда просто энергией Гиббса). Свободная энергия Гиббса (G) cвязана с энтальпией и энтропией следующим уравнением:

Изменение энергии Гиббса при переходе системы из начального состояния в конечное определяется соотношением:

ΔG = ΔH - TΔS

Поскольку уравнение справедливо для процессов, протекающих при постоянных температуре и давлении, функцию G называют изобарно-изотермическим потенциалом . В полученном уравнении величина ΔН оценивает влияние энтальпийного фактора, а величина ТΔS - энтропийного фактора на возможность протекания процесса. По своему физическому смыслу свободная энергия Гиббса - это та часть ΔН, которая при определенных условиях может быть превращена в работу, совершаемую системой против внешних сил. Остальная часть ΔН, равная ТΔS, представляет "несвободную" энергию, которая идет на повышение энтропии системы и в работу превращена быть не может. Свободная энергия Гиббса - это своеобразный потенциал, определяющий движущую силу химического процесса. Подобно физическим потенциалам (электрическому, гравитационному) энергия Гиббса уменьшается по мере самопроизвольного протекания процесса до тех пор, пока не достигнет минимального значения, после чего процесс прекратится.

Пусть в системе при постоянных давлении и температуре cамопроизвольно протекает какая-то реакция (неравновесный процесс). В этом случае ΔH < TΔS, соответственно ΔG <0. Таким образом, изменение функции Гиббса может служить критерием при определении направления протекания реакций: в изолированной или закрытой системе при постоянной температуре и давлении самопроизвольно протекают реакции, для которых изменение свободной энергии Гиббса отрицательно (ΔG < 0).



Пусть протекающая в системе реакция обратима. Тогда при заданных условиях прямая реакция принципиально осуществима, если ΔG < 0, а обратная - если ΔG > 0; при ΔG = 0 система будет находиться в состоянии равновесия. Для изолированных систем ΔН = 0, поэтому ΔG = - TΔS. Таким образом, в изолированной системе самопроизвольно протекают процессы, приводящие к повышению энтропии (второй закон термодинамики).

Поскольку в уравнение энергии Гиббса входит энтальпия системы, определить ее абсолютное значение невозможно. Для расчета изменения свободной энергии, отвечающего протеканию той или иной реакции, используют энергии Гиббса образования соединений, участвующих во взаимодействии. Энергия Гиббса образования соединения (ΔG f) - это изменение свободной энергии, соответствующее синтезу моля данного соединения из простых веществ. Энергии Гиббса образования соединений, отнесенные к стандартным условиям, называются стандартными и обозначаются символом . Значения приведены в справочной литературе; их можно также вычислить по значениям энтальпий образования и энтропий соответствующих веществ.

Пример №1. Требуется рассчитать для Fe 3 O 4 , если известна энтальпия образования этого соединения ΔН о f (Fe 3 O 4) = -1117,13 кДж/моль и энтропии железа, кислорода и Fe 3 O 4 , равные 27,15; 205,04 и 146,19 Дж/моль. К. Соответственно

(Fe 3 O 4) = (Fe 3 O 4) - T· ,

где Δ - изменение энтропии при протекании реакции: 3Fe + 2O 2 = Fe 3 O 4

Изменение энтропии рассчитывается по следующему уравнению:

Δ = (Fe 3 O 4) - =

146,19 - (3 . 27,15 + 2 . 205,04) = -345,3(Дж/моль . К);

Δ = -0,34534 кДж/моль·К

(Fe 3 O 4) = -1117,13 - 298(-0,34534) = -1014,2 (кДж/моль)

Полученный результат позволяет сделать вывод, что реакция принципиально возможна при стандартных условиях. В данном случае энтальпийный фактор благоприятствует протеканию реакции ( < 0), а энтропийный - препятствует (Т < 0), но не может увеличить до положительной величины



Поскольку G является функцией состояния, то для реакции: aA + bB = dD + eE изменение энергии Гиббса можно определить по уравнению

= Σi (пр) - Σj (реаг)

Пример №2. Оценим принципиальную возможность получения озона при взаимодействии азотной кислоты с кислородом (условия стандартные) по уравнению:

4HNO 3 (ж) + 5O 2 (г) = 4O 3 (г) + 4NO 2 (г) + 2H 2 O(ж)

Рассчитаем изменение энергии Гиббса в стандартных условиях:

= - =

4·162,78 + 4·52,29 - = 1179,82 (кДж)

Самопроизвольное протекание реакции при стандартных условиях принципиально невозможно. В то же время диоксид азота может быть окислен озоном до азотной кислоты, так как для обратной реакции значение ΔG отрицательно.

ХИМИЧЕСКАЯ КИНЕТИКА

Уравнения химических реакций, в которых указаны их тепловые эффекты, называются термохимическими уравнениями.

Тепловые эффекты химических реакций - теплота, выделенная или поглощенная термодинамической системой при протекании в ней химической реакции. Определяется при условии, что система не совершает никакой работы (кроме возможной работы расширения), а температуры реагентов и продуктов равны.

При постоянном давлении (p ) и отсутствии других видов работ кроме работы против внешнего давления из первого закона термодинамики можно получить:

ΔQ = ΔH = ΔU + p ΔV .

Таким образом тепловой эффект химической реакции равен ΔН , которая в термодинамике носит название энтальпия .

Из первого закона термодинамики следует, что тепловой эффект химической реакции (при р = const и Т = const) не зависит от пути ее протекания, а зависит лишь от природы и физического состояния исходных веществ и продуктов реакции (закон Г. И. Гесса).

Термохимические расчеты. В основе большинства термохимических расчетов лежит следствие из закона Гесса: тепловой эффект химической реакции равен сумме теплот (энтальпий) образования продуктов реакции (ΔН ) за вычетом суммы теплот (энтальпий) образования исходных веществ с учетом стехиометрических коэффициентов (n , m )в уравнении реакции:

продукты исходных

реакции веществ

Энтальпия образования химических соединений (DН ) - изменение энтальпии в процессе получения этого соединения из простых веществ, устойчивых при данной температуре.

Стандартной энтальпией (теплотой) образования химического соединения (ΔН° 298) называется изменение энтальпии в процессе образования одного моля этого соединения, находящегося в стандартном состоянии (Т = 298 К и давление р = 1,01?10 -5 Па), из простых веществ, также находящихся в стандартных состояниях и термодинамически устойчивых фазах и модификациях. Стандартные энтальпии образования простых веществ принимают равными нулю, если их агрегатные состояния и модификации устойчивы при стандартных условиях. Стандартная энтальпия образования соединения - мера его термодинамической устойчивости, прочности.

Если DН > 0, реакцию называют эндотермической , если же теплота выделяется в окружающую среду DН < 0, реакцию называют экзотермической .

Поскольку значение DН определяется по уравнению (1) и не зависит от пути и способа проведения процесса, энтальпию относят к термодинамическим функциям состояния системы.

Первый закон (или начало) термодинамики ничего не говорит о направлении процесса, т.е. о направлении химической реакции. На этот вопрос отвечает второе начало термодинамики. Второй закон термодинамики выполняется только для систем, состоящих из большого количества молекул, для которых применимо понятие - вероятность состояния системы.


Число микросостояний системы, которые могут обеспечить данное макросостояние системы, называют термодинамической вероятностью (W ). Больцман установил связь между термодинамической вероятностью и энтропией системы (S ):

S = k lnW ,

где k - постоянная Больцмана, k = R / N A .

Изменение энтропии, как правило, определяется по уравнению

ΔS = ΔQ / T .

Энтропия является мерой неупорядоченности состояния системы. При переходе системы из менее упорядоченного состояния (с большим беспорядком) в более упорядоченное (с меньшим беспорядком) энтропия убывает. При переходе из газообразного в жидкое, а затем в кристаллическое (твердое) состояние степень беспорядка убывает, при этом убывает и энтропия системы. Энтропия - термодинамическая функция состояния системы (Дж/(моль×К)). Изменение энтропии (DS) при химических реакциях определяется следующим образом:

.

На основании понятия энтропии, второй закон термодинамики формулируется следующим образом: в изолированной системе самопроизвольно, т.е. без подвода энергии извне, совершаются только те процессы, которые обеспечивают повышение энтропии системы.

Третий закон термодинамики касается абсолютного значения энтропии. В настоящее время определить экспериментально или рассчитать абсолютное значение внутренней энергии и энтальпии не представляется возможным. Однако абсолютное значение энтропии определить возможно. Если принять, что при температуре абсолютного нуля все вещества находятся в кристаллическом состоянии, и при этом отсутствует всякое движение атомов и (или) молекул, за исключением движения электронов, то термодинамическая вероятность такого состояния будет равна единице (W = 1). Таким образом, используя уравнение Больцмана для расчета энтропии, получи, что при данной температуре S = 0. Это и есть третий закон термодинамики.

Объединив уравнения ΔQ = ΔU + p ΔV + ΔA * и ΔS = ΔQ / T , и учитывая, что ΔH = ΔU + p ΔV получим

Т ΔS = ΔH + ΔА * или ΔА * = - (ΔH - Т ΔS ).

В термодинамике величину ΔH - Т ΔS = ΔG определяют как изменение энергии Гиббса . Энергия Гиббса (H - Т S = G ) есть термодинамическая функция состояния системы, а ее изменение при химических взаимодействиях DG - энергиея Гиббса химической реакции.

Поскольку работа есть величина положительная, то система совершает работу над окружающей средой только в том случае, если энергия Гиббса будет меньше нуля (ΔG < 0). Таким образом, в закрытой системе самопроизвольно совершаются только те процессы, которые идут с уменьшением энергии Гиббса. Пределом этой убыли является минимальное значение G , отвечающее состоянию равновесия системы.

Если ΔG > 0, то процесс самопроизвольно протекать не может. В случае если ΔG = 0, т.е. ΔH = Т ΔS , то имеет место такое состояние, при котором реакция не идет ни в прямую, ни обратную сторону. Это состояние называется равновесным.

Из сказанного следует, что DG является критерием направления и предела самопроизвольного протекания изобарно-изотермического процесса. Из уравнения ΔG = ΔH - Т ΔS следует, что протекание самопроизвольной химической реакции зависит от двух факторов:

1) ΔH - стремление системы обладать минимальным запасом внутренней энергии;

2) Т ΔS - стремление системы принимать состояние с наиболее возможным беспорядком.

Энергия Гиббса образования химических соединений. Энергия Гиббса химической реакции DG , являясь изменением термодинамической функции состояния системы G , может быть вычислена по разности

.

Стандартной энергией Гиббса образования химического соединения DG ° обр называют энергию Гиббса реакции образования одного моля этого соединения, находящегося в стандартном состоянии, из соответствующих простых веществ, также находящихся в стандартных состояниях и термодинамически устойчивых при данной температуре фазах и модификациях.

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества, называются необратимыми. Необратимых реакций не так много. Большинство реакций являются обратимыми. Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.

Таким образом, химическая термодинамика отвечает на вопросы:

− о возможности протекания реакции самопроизвольно в нужном направлении;

− сколько при этом выделится энергии;

− когда процесс закончится, т.е. наступит равновесие;

− если процесс самопроизвольно протекать не может, то сколько необходимо подвести энергии или какие необходимо создать условия (температура, давление, концентрация и другие факторы) для его протекания.

Химическая (равновесная) термодинамика не отвечает на вопрос о скорости процесса.

Химическое равновесие

Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия. Состояние равновесия наиболее устойчиво, и всякое отклонение от него требует затраты энергии. Например, в реакции синтеза аммиака равновесие наступает тогда, когда в единицу времени образуется столько же молекул аммиака, сколько их распадается на азот и водород . Следовательно, химическое равновесие можно определить как такое состояние системы реагирующих веществ, при котором скорости прямой и обратной реакций равны между собой.

В состоянии равновесия прямая и обратная реакции не прекращаются. Поэтому такое равновесие называется подвижным или динамическим равновесием . Концентрации всех реагирующих веществ (как исходных, так и образующихся) остаются строго постоянными. Концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, называются равновесными.

На состояние химического равновесия оказывают влияние концентрация реагирующих веществ, температура, а для газообразных веществ и давление. При изменении одного из этих параметров равновесие нарушается и концентрация всех реагирующих веществ изменяется до тех пор, пока не установится новое равновесие, но уже при иных значениях равновесных концентраций. Подобный переход реакционной системы от одного состояния равновесия к другому называется смещением (или сдвигом) химического равновесия. Если при изменении условий увеличивается концентрация конечных веществ, то говорят о смещении равновесия в сторону продуктов реакции. Если же увеличивается концентрация исходных веществ, то равновесие смещается в сторону их образования.

Состояние химического равновесия характеризуется константой равновесия.

например, для гомогенной реакции

aA + bB « cC + dD

выражение для скорости прямой реакции в соответствии с законом действия масс:

v пр = k пр [A ] a [B ] b ,

где k пр - константа скорости прямой реакции; [A ] и [B ] - концентрации веществ.

Аналогично, для обратной реакции:

v обр = k обр [С ] с [D ] d .

Так как в состоянии равновесия скорости прямой и обратной реакций равны, то

k пр [A ] a [B ] b = k обр [С ] с [D ] d ,

К = k пр / k обр = [С ] с [D ] d / [A ] a [B ] b .

В процессе химических реакций действуют две тенденции:

1.Н min (энтальпийный фактор);

2.S max (энтропийный фактор).

Оба эти фактора действуют во взаимно-противоположных направлениях и течение реакции определяется тем из них, который преобладает в данном конкретном случае. Изменение энтальпии и энтропии при химической реакции учитывает энергия Гиббса ∆G 0 (кДж): ∆G 0 = ∆Н 0 – Т∆S 0 , где Т – абсолютная температура, ∆S 0 . стандартное изменение энтропии; ∆Н 0 – стандартное изменение энтальпии.

Величина и знак G определяют возможность самопроизвольного протекания химической реакции и ее направление. При постоянной температуре и давлении реакция самопроизвольно протекает в том направлении, которому отвечает убыль энергии Гиббса.

G < 0 - реакция идет самопроизвольно в прямом направлении;

G > 0 - при данных условиях реакция в прямом направлении не идет;

G = 0 - реакция обратима (химическое равновесие).

Изменение ∆ r G не зависит от пути процесса и может быть рассчитано по следствию из закона Гесса: изменение энергии Гиббса в результате химической реакции равно сумме энергий Гиббса образования продуктов реакции за вычетом суммы энергий Гиббса образования исходных веществ.

R G 0 = Σ∆ f G 0 продуктов реакции – Σ∆ f G 0 исходных веществ,

где ∆ f G 0 – стандартная энергия Гиббса образования, кДж/моль; справочная величина. ∆ f G 0 простых веществ равна нулю.

Лекция № 6. СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

Химическая кинетика - раздел химии, изучающий скорость и механизм химических реакций. Скоростью химической реакции называют изменение количества реагирующего вещества за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной системы).Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры, присутствия катализаторов.

Зависимость скорости химической реакции от природы реагирующихвеществ обусловлена тем, что каждая реакция характеризуется определенным значением энергии активации. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Для того чтобы разрушить одну связь и образовать другую связь, необходимы определенные энергетические затраты. Энергия активации Е а – это та избыточная энергия, которой должны обладать молекулы для того чтобы их столкновение могло привести к образованию нового вещества. Если энергия активации очень мала (< 40 кДж/моль), то реакция идет с очень большой скоростью, если энергия активации очень велика (>120 кДж/моль), то скорость реакции неизмеримо мала.



Зависимость скорости реакции от концентрации реагирующих веществ выражается законом действия масс (ЗДМ) : при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

В общем случае для гомогенной реакции nA (г) + mB (г) = pAB (г)

зависимость скорости реакции от концентрации выражается уравнением:

,

где С А и С В – концентрации реагирующих веществ, k – константа скорости реакции. Для конкретной реакции 2NO (г) + O 2(г) = 2NO 2(г) математическое выражение ЗДМ имеет вид: υ = k∙∙

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.

Для гетерогенных реакций скорость реакции зависит только от концентрации газов или растворенных веществ, а концентрация твердой фазы в математическое выражение ЗДМ не входит. Например, скорость реакции горения углерода в кислороде пропорциональна только концентрации кислорода:

С (к) + О 2(г) = СО 2(к) , υ = k·

Зависимость скорости реакции от температуры. При повышении температуры увеличивается скорость движения молекул, что приводит в свою очередь к увеличению числа столкновений между ними.. Повышение температуры увеличивает число активных молекул, и, следовательно, увеличивает скорость химической реакции.

Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа : при повышении температуры на каждые 10 °C скорость реакции возрастает в 2-4 раза .

,

где υ 2 и υ 1 – скорости реакций при температурах t 2 и t 1 ,

γ – температурный коэффициент скорости реакции, показывающий во сколько раз увеличивается скорость реакции при повышении температуры на 10 0 С

Более строго зависимость скорости реакции от температуры описывается уравнением Аррениуса , которое связывает константу скорости реакции с энергией активации:

где А – это постоянный множитель, который равен числу столкновений молекул в единицу времени, умноженному на вероятность химического взаимодействия при столкновении.

Зависимость скорости реакции от катализатора. Вещества, увеличивающие скорость реакции, а сами остающиеся после нее химически неизменными , называются катализаторами . Изменение скорости реакции под действием катализаторов называется катализом . Различают катализ гомогенный и гетерогенный .

Если реагирующие вещества и катализатор находится в одном и том же агрегатном состоянии, то катализ гомогенный :

2SO 2(г) + O 2(г) 2SO 3(г)

Если реагирующие вещества и катализатор находится в различных агрегатных состояниях, то катализ гетерогенный :

N 2(г) + 3H 2(г) 2NH 3(г)

Действие катализатора заключается в том, что он уменьшает энергию активации, и при этом увеличивается скорость реакции.

Лекция № 7. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Химические реакции делятся на необратимые и обратимые . Необратимые протекают только в прямом направлении (до полного израсходования одного из реагирующих веществ), обратимые протекают как в прямом, так и в обратном направлениях (при этом ни одно из реагирующих веществ не расходуется полностью). Рассмотрим следующую реакцию:

Математическое выражение закона действия масс для скорости прямой υ пр и обратной υ обр реакций имеет вид:

υ пр = υ обр =

В момент смешивания веществ А и В скорость прямой реакции будет максимальной. Затем вещества А и В постепенно расходуются и скорость прямой реакции уменьшается. Получившиеся вещества D и F начнут реагировать друг с другом, и скорость обратной реакции будет непрерывно возрастать по мере увеличения концентрации веществ D и F. В определенный момент времени скорость прямой реакции станет равна скорости обратной реакции.

Состояние системы, при котором скорость прямой реакции (υ 1) равна скорости обратной реакции (υ 2) , называетсяхимическим равновесием. Концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, называются равновесными .

Закон действия масс для обратимых процессов : в состоянии химического равновесия при неизменной температуре отношение произведения концентраций продуктов реакции к произведению концентраций исходных веществ есть величина постоянная . Эта величина называется константой равновесия . Равновесные концентрации принято обозначать не символом «С А », а формулой вещества, помещенной в квадратные скобки, например, , а константу равновесия, выражаемую через концентрации – К С. Для обратимой реакции aA+bB dD + fF математическое выражение закона действия масс имеет вид:

.

Для конкретной гомогенной реакции:

2СО (г) + О 2(г) ↔ 2СО 2(г)

Для гетерогенной реакции СО 2(г) + С (к) = 2СО (г) . Концентрация твердой фазы в математическое выражение ЗДМ для гетерогенных систем не входит.

Химическое равновесие неизменно до тех пор, пока условия равновесия (концентрация, температура, давление ), сохраняются постоянными. При изменении условий равновесие нарушается. Через некоторое время в системе вновь наступает равновесие, характеризующееся новым равенством скоростей и новыми равновесными концентрациями всех веществ. Переход системы из одного равновесного состояния в другое называется смещением равновесия .

Направление смещения равновесия определяется принципом Ле Шателье : если на систему, находящуюся в равновесии, оказывается внешнее воздействие (изменяется концентрация, давление, температура), то равновесие смещается в сторону той реакции, которое ослабляет произведенное воздействие.