Фальсифицируемы ли законы Ньютона? Следствия из законов ньютона.

Урок

Покоится? Изобразите силы графически. б) Определите силу , под действием которой тело массой закон Ньютона» ; Фаридонов Рустам- «Второй закон Ньютона» закон Ньютона» . Этап практической...

  • Законы ньютона

    Урок

    Покоится? Изобразите силы графически. б) Определите силу , под действием которой тело массой 500 г движется... Самир- «Первый закон Ньютона» ; Фаридонов Рустам- «Второй закон Ньютона» ; Картюкова Светлана- «Третий закон Ньютона» . Этап практической...

  • Законы ньютона классическая механика

    Закон

    Точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу ... быть выведены все остальные законы механики. Комментарии к законам Ньютона Сила инерции Законы Ньютона , строго говоря, справедливы...

  • Блок 1 механическое движение волны звук законы ньютона силы кинематика прямолинейного движения

    Закон

    Прямо пропорционально равнодействующей силе и обратно пропорционально массе тела». Третий закон Ньютона : «Силы , с которыми два тела...

  • Речь пойдёт о двух законах Ньютона – первом и втором

    Закон

    ... законов обратимся к физической сущности явления инерции, с привлечением представлений о веществе, инерционной массе и силе ... То есть инерционная масса – взаимосвязь и... второго закона Ньютона НЕ УЧТЕНА СИЛА ИНЕРЦИИ. Второй закон Ньютона ОШИБОЧЕН. ...

  • Главными законы классической механики являются три закона Ньютона. Сейчас мы рассмотрим их подробней.

    Первый закон Ньютона

    Наблюдения и опыт показывают, что тела получают ускорение относительно Земли, т. е. изме­няют свою скорость относительно Земли, только при действии на них других тел.

    Представим себе, что пробка воздушного «пистолета» приходит в движении под действием газа, сжимаемого выдвигаемым поршнем, т.е. получается такая последовательная цепочка сил:

    Сила, приводящая в движение поршень => Сила поршня, сжимающая газ в цилиндре => Сила газа, приводящая в движение пробку.

    В этом и других подобных случаях изменение скорости, т.е. возникновение ускорения, есть результат действие сил на данное тело других тел.

    Если же на тело не будут действовать силы (или силы будут скомпенсированным, т.е. ), то тело будет оставаться в покое (относительно Земли), либо двигаться равномерно и прямолинейно, т.е. без ускорения.

    На основе этого позволило установить первый закон Ньютона, который чаще называют закон инерции:

    Существуют такие инерциальные системы отсчета, относительно которых, тело покоится (частный случай движения) или движется равномерно и прямолинейно, если на тело не действуют силы или действия этих сил скомпенсировано.

    Проверить простыми опытами данный закон практически невозможно, потому что невозможно полностью устранить действие всех окружающих сил, особенно действие трения.

    Тщательные опыты по изучению движения тел были впервые произведены итальянским физиком Галилеем Галилео в конце XVI и начале XVII веков. Позже более подробнее этот закон был описан Исааком Ньютоном, поэтому в честь него и был назван этот закон.

    Подобные проявления инерции тел широко используют­ся в быту и технике. Встряхивание пыльной тряпки, «сбрасывания» стол­бика ртути в термометре.

    Второй закон Ньютона

    Различные опыты показывают, что ускорения совпадает с направлением силы, вызывающее это ускорение. Поэтому, можно сформулировать закон зависимости сил приложенных к телу от ускорения:

    В инерциальной системе отсчёта произведение массы и ускорение равно равнодействующей силы (равнодействующая сила – геометрическая сумма всех сил, приложенных к телу) .

    Масса тела, является коэффициентом пропорциональности данной зависимости. По определению ускорения () запишем закон в иной форме, а далее получается, что в числители правой части равенства является изменение импульса Δ p , поскольку Δ p=m Δv

    Значит, второй закон можно записать в такой виде:

    В таком виде Ньютон и записал свой второй закон.

    Данный закон действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.

    Третьей закон Ньютона

    При соударении двух тел изменяют свою скорость, т.е. получают ускорения оба тела. Земля притягивает Луну и заставляет ее двигаться по криволинейной траектории; в свою же очередь Луна также притягивает Землю (сила всемирного тяготения).

    Эти примеры показывают, что силы всегда возникают парами: если одно тело действует с силой на другое, то и второе тело действует на первое с такой же силой. Все силы носят взаимный характер.

    Тогда можно сформулировать третий закон Ньютона:

    Тела попарно действуют друг на друга с силами, направленными вдоль прямой, равными по модулю и противоположными по направлению.

    Часто этот закон называют трудным законом, т.к. не понимают смысл этот закон. Для простоты понимания закона можно переформулировать данный закон («Действие равно противодействию») на « Сила, противодействующая равна силе действующей» , так как эти силы приложены к разным телам.

    Даже падение тел строго подчиняется закону про­тиводействия. Яблоко надает на Землю оттого, что его притягивает земной шар; но точно с такой же силой и яблоко притягивает к себе всю нашу планету.

    Для силы Лоренца третий закон Ньютона не выполняется.

    Основные законы механики Ньютон сформулировал в своей книге «Математические начала натуральной философии».

    Итак, можно сделать вывод, что все эти три закона Ньютона являются фундаментном классической механики; и каждый из законов вытекает в другой.

    1) Первый закон Ньютона : Существуют такие системы отсчета, называемые инерциальными, относительно которых свободные тела движется равномерно и прямолинейно.

    Первый закон механики, или закон инерции, как его часто называют, бал, по существу, установлен еще Галилеем, но общую формулировку ему дал Ньютон.

    Свободным телом – называют тело, на которое не действуют какие – либо другие тела или поля. При решении некоторых задач тело можно считать свободным, если внешние воздействия уравновешены.

    Системы отсчета, в которых свободная материальная точка покоится или движется прямолинейно и равномерно, называются инерциальными системами отсчета . Прямолинейное и равномерное движение свободной материальной точки в инерциальной системе отсчета называется движением по инерции . При таком движении вектор скорости материальной точки остается постоянным ( = const ). Покой точки является частным случаем движения по инерции ( =0).

    В инерциальных системах отсчета покой или равномерное движение представляет собой естественное состояние, а динамика должна объяснить изменение этого состояния (т.е. появление уско­рения тела под действием сил). Свободных тел, не подверженных воздействию со стороны других тел не существует. Однако, благо­даря убыванию всех: известных взаимодействий с увеличением рас­стояния, такое тело можно реализовать с любой требуемой, точ­ностью.

    Системы отсчета, в которых свободное тело не сохраняет ско­рость движения неизменной, называются неинерциальными . Неинерциальной является система отсчета, движущаяся с ускорением отно­сительно любой инерциальной системы отсчета. В неинерциальной системе отсчета даже свободное тело может двигаться с ускорением.

    Равномерное и прямолинейное движение системы отсчета не влияет на ход механических явлений, протекающих в ней. Никакие механические опыты не позволяют отличить покой инерциальной системы отсчета от ее равномерного прямолинейного движения. Для любых механических явлений все инициальные системы отсче­та оказываются равноправными. Эти утверждения выражают меха­нический принцип относительности (принцип относительности Галилея) . Принцип относительности является одним из наиболее об­щих законов природы, в специальной теории относительности он распространяется на электромагнитные и оптические явления.

    2) Масса, плотность, сила.

    Свойство тела сохранять свою скорость при отсутствии взаимодействия с другими телами называется инертностью. Физическая величина, являющаяся мерой инертности тела в поступательном движении, называется инертной массой . Масса тела измеряется в килограммах: . Масса характеризует также способность тела взаимодействовать с другими телами в соответствии с законом всемирного тяготения. В этих случаях масса выступает как мера гравитации и ее называют гравитационной массой .

    В современной физике с высокой степенью точности доказана тождественность значений инертной и гравитационной масс данно­го тела. Поэтому говорят просто о массе тела (m).

    В механике Ньютона считается, что

    а) масса тела равна сумме масс всех частиц (или материальных точек), из которых оно состоит;

    б) для данной совокупности тел выполняется закон сохранения массы: при любых процессах, происходящих в системе тел, ее масса остается неизменной.

    Плотность однородного тела равна . Единица плотности 1 кг/м 3 .

    Силой называется векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей. Сила полностью определена, если заданы ее модуль, направление и точка приложения. Прямая, вдоль которой направ­лена сила, называется линией действия силы .

    В результате действия силы тело изменяет скорость движения (приобретает ускорение) или деформируется. На основании этих опытных фактов производится измерение сил.

    Сила является причиной возникновения не скорости, а ускорения тела. С направлением силы совпадает во всех случаях направление ускорения, но не скорости.

    В задачах механики учитываются гравитационные силы (силы тяготения) и две разновидности электромагнитных сил - силы упру­гости и силы трения.

    3) Второй закон Ньютона

    Второй закон Ньютона описывает движение частицы, вызванное влиянием окружающих тел, и устанавливает связь между ускорением частицы, ее массой и силой, с которой на нее действуют эти тела:

    Если на частицу с массой т окружающие тела действуют с силой , то эта частица приобретает такое ускорение , что произведение ее массы на ускорение будет равно действующей силе.

    Математически второй закон Ньютона записывается в виде:

    На основе этого закона устанавливается единица силы - 1 Н (нью­тон). 1 Н - это сила, с которой нужно действовать на тело массой 1 кг, чтобы сообщить ему ускорение 1 м/с 2 .

    Если сила , с которой тела действуют на данную частицу, из­вестна, то записанное для этой частицы уравнение второго закона Ньютона называют ее уравнением движения.

    Второй закон Ньютона часто называют основным законом дина­мики, так как именно в нем находит наиболее полное математическое выражение принцип причинности и именно он, наконец, позволяет решить основную задачу механики. Для этого нужно выяснить, какие из окружающих частицу тел оказывают на нее существенное действие, и, выразив каждое из этих действий в виде соответствующей силы, следует составить уравнение движения данной частицы. Из уравнения движения (при известной массе) находится ускорение частицы. Зная

    же ускорение можно определить ее скорость, а после скорости - и положение данной частицы в любой момент времени.

    Практика показывает, что решение основной задачи механики с помощью второго закона Ньютона всегда приводит к правильным результатам. Это и является экспериментальным подтверждением справедливости вто­рого закона Ньютона.

    4) Третий закон Ньютона.

    Третий закон Ньютона: Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.

    Это означает, что если на тело А со стороны тела В действует сила , то одновременно на тело В со стороны тела А будет действовать сила , причем = - .

    Используя второй закон Ньютона, можно записать:

    Отсюда следует, что

    т. е. отношение модулей ускорений и взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил. Более массивное тело получает меньшее ускорение, а легкое - большее.

    Важно понимать, что силы, о которых идет речь в третьем законе Ньютона, приложены к разным телам и поэтому они не могут уравновешивать друг друга.

    5) Следствия из законов Ньютона

    Законы Ньютона представляют собой систему взаимосвязанных законов, которые позволяют глубже понять сущность понятий силы и массы. Следствия из законов:

    1. Сила является мерой воздействия, оказываемого на данную частицу со стороны других тел, и с увеличением расстояния до них убывает, стремясь к нулю.

    Динамика.

    Вопрос 1: понятие силы. Фундаментальные силы. Свободное тело. Инерциальные системы отсчета.

    Ответ:

    Понятие силы.

    Сила - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел , а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций (измеряется в Ньютонах).

    Фундаментальные силы.

    1) Гравитационная сила - одна из четырех фундаментальных сил в природе. Гравитация самая слабая по сравнению с остальными. Сила гравитации F между двумя предметами массой m1 и m2 на расстоянии d, найденная Исааком Ньютоном, равна F=Gm1m2/d2, где G - коэффициент пропорциональности, называемый универсальной гравитационной постоянной.

    2) Электромагнитная сила - связывает отрицательно заряженные электроны с положительно заряженным ядром внутри атома. (Единая Теория Поля - ЕДИНАЯ ТЕОРИЯ ПОЛЯ, попытка расширить общую теорию ОТНОСИТЕЛЬНОСТИ, чтобы дать одновременное представление как гравитационного, так и электромагнитного полей. Наиболее полная, всеобъемлющая теория должна также включать сильные и слабые ядерные взаимодействия. Хотя в обобщении электромагнитных сил и слабых ядерных взаимодействий были достигнуты некоторые успехи, общая проблема остается нерешенной).

    3) Ядерные взаимодействие – слабое ядерное взаимодействие. Слабыми взаимодействиями обусловлен радиоактивный распад. Они имеют очень малый радиус действия: их можно наблюдать только на субатомном уровне. Слабые взаимодействия слабее электромагнитной силы и сильного взаимодействия (самого сильного из фундаментальных сил), но гораздо сильнее гравитационных.

    4) СИЛЬНОЕ ЯДЕРНОЕ ВЗАИМОДЕЙСТВИЕ, которое ассоциируется с «клеем», связывающим ядра вместе, - это самая мощная сила, известная в природе.

    Свободное тело.

    Свободное тело – свобода перемещений тела не ограничивается никакими другими телами (тело, на которое не действуют никакие силы). Несвободное тело – его движение ограничено другими телами. Связь – тело, ограничивающее свободу перемещений объекта. Реакция связи – сила, действующая на объект со стороны связи. Принцип освобождаемости от связи – несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие соответствующими реакциями.

    Инерциальные системы отсчета.

    Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.

    Инерциальных систем существует бесконечное множество. Система отсчета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы.

    Инерциальными являются и системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета.

    Вопрос : Законы Ньютона. Понятие массы, импульса, импульса силы.

    Ответ :

    Законы Ньютона.

    Законы механики Ньютона

    1) Первый закон Ньютона: Существуют такие системы отсчета, называемые инерциальными, относительно которых свободные тела движется равномерно и прямолинейно.

    Первый закон механики, или закон инерции, как его часто называют, бал, по существу, установлен еще Галилеем, но общую формулировку ему дал Ньютон.

    Прямолинейное и равномерное движение свободной материальной точки в инерциальной системе отсчета называется движением по инерции . При таком движении вектор скорости материальной точки остается постоянным ( = const ). Покой точки является частным случаем движения по инерции ( =0).

    В инерциальных системах отсчета покой или равномерное движение представляет собой естественное состояние, а динамика должна объяснить изменение этого состояния (т.е. появление уско­рения тела под действием сил). Свободных тел, не подверженных воздействию со стороны других тел не существует. Однако, благо­даря убыванию всех: известных взаимодействий с увеличением рас­стояния, такое тело можно реализовать с любой требуемой, точ­ностью.

    Системы отсчета, в которых свободное тело не сохраняет ско­рость движения неизменной, называются неинерциальными. Неинерциальной является система отсчета, движущаяся с ускорением отно­сительно любой инерциальной системы отсчета. В неинерциальной системе отсчета даже свободное тело может двигаться с ускорением.

    Равномерное и прямолинейное движение системы отсчета не влияет на ход механических явлений, протекающих в ней. Никакие механические опыты не позволяют отличить покой инерциальной системы отсчета от ее равномерного прямолинейного движения. Для любых механических явлений все инициальные системы отсче­та оказываются равноправными. Эти утверждения выражают меха­нический принцип относительности (принцип относительности Галилея). Принцип относительности является одним из наиболее об­щих законов природы, в специальной теории относительности он распространяется на электромагнитные и оптические явления.

    Второй закон Ньютона

    Второй закон Ньютона описывает движение частицы, вызванное влиянием окружающих тел, и устанавливает связь между ускорением частицы, ее массой и силой, с которой на нее действуют эти тела:

    Если на частицу с массой т окружающие тела действуют с силой , то эта частица приобретает такое ускорение , что произведение ее массы на ускорение будет равно действующей силе.

    Математически второй закон Ньютона записывается в виде:

    На основе этого закона устанавливается единица силы - 1 Н (нью­тон). 1 Н - это сила, с которой нужно действовать на тело массой 1 кг, чтобы сообщить ему ускорение 1 м/с 2 .

    Если сила , с которой тела действуют на данную частицу, из­вестна, то записанное для этой частицы уравнение второго закона Ньютона называют ее уравнением движения.

    Второй закон Ньютона часто называют основным законом дина­мики, так как именно в нем находит наиболее полное математическое выражение принцип причинности и именно он, наконец, позволяет решить основную задачу механики. Для этого нужно выяснить, какие из окружающих частицу тел оказывают на нее существенное действие, и, выразив каждое из этих действий в виде соответствующей силы, следует составить уравнение движения данной частицы. Из уравнения движения (при известной массе) находится ускорение частицы. Зная

    же ускорение можно определить ее скорость, а после скорости - и положение данной частицы в любой момент времени.

    Практика показывает, что решение основной задачи механики с помощью второго закона Ньютона всегда приводит к правильным результатам. Это и является экспериментальным подтверждением справедливости вто­рого закона Ньютона.

    Третий закон Ньютона.

    Третий закон Ньютона: Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.

    Это означает, что если на тело А со стороны тела В действует сила , то одновременно на тело В со стороны тела А будет действовать сила , причем = - .

    Используя второй закон Ньютона, можно записать:

    Отсюда следует, что

    т. е. отношение модулей ускорений и взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил. Более массивное тело получает меньшее ускорение, а легкое - большее.

    Важно понимать, что силы, о которых идет речь в третьем законе Ньютона, приложены к разным телам и поэтому они не могут уравновешивать друг друга.

    Следствия из законов Ньютона

    Законы Ньютона представляют собой систему взаимосвязанных законов, которые позволяют глубже понять сущность понятий силы и массы. Следствия из законов:

    1. Сила является мерой воздействия, оказываемого на данную частицу со стороны других тел, и с увеличением расстояния до них убывает, стремясь к нулю.

    То, что сила является мерой воздействия со стороны окружающих частику тел, следует из того, что она зависит от состояния этих тел и при этом определяет ускорение данной частицы: . Убывания действующей силы до нуля при неогра­ниченном удалении от частицы окружающих ее тел является следствием первого и второго законов Ньютона. Так как, со­гласно первому закону Ньютона, бесконечно удаленная от всех тел

    частица имеет нулевое ускорение . Согласно второму закону Нью­тона Поэтому при и сила .

    2 . Сила, с которой сразу несколько тел действует на данную частицу, равна сумме сил, с которыми эти тела действуют на нее по отдельности:

    Это утверждение называется принципом независимости взаимодействий. С учетом этого принципа второй закон Ньютона записы­вается в виде:

    Сумму сил, стоящую в правой части этого закона, называют равнодействующей силой .

    Принцип независимости взаимодействий иначе называют принципом суперпозиции сил .

    3. Сумма всех внутренних сил, действующих в любой сис­теме, всегда равна нулю.

    Под внутренними понимают те силы, которые действуют между телами самой рассматриваемой системы.

    Внутренние силы не способны привести в движение систему тел как целое. Действительно, для этого нужно было бы сообщить ускорение, а ускорение, как это следует из второго закона Ньютона, могут сообщить системе лишь те силы, сумма ко­торых отлична от нуля.

    4. Отношение модулей ускорений, полученных двумя те­лами в результате взаимодействия друг с другом, равно обратному отношению их масс:

    2. Масса, импульс, импульс силы.

    Свойство тела сохранять свою скорость при отсутствии взаимодействия с другими телами называется инертностью. Физическая величина, являющаяся мерой инертности тела в поступательном движении, называется инертной массой . Масса тела измеряется в килограммах: .

    Масса характеризует также способность тела взаимодействовать с другими телами в соответствии с законом всемирного тяготения. В этих случаях масса выступает как мера гравитации и ее называют гравитационной массой .

    В современной физике с высокой степенью точности доказана тождественность значений инертной и гравитационной масс данно­го тела. Поэтому говорят просто о массе тела (m).

    Внимание! Задание следующее: найдите и исправьте имеющиеся в статье ошибки, заполните пробелы. Расширьте статью необходимыми материалами. Будьте бдительны: в одном предложении может быть несколько пробелов и несколько ошибок.

    Опыт с тележкой

    Тележку на колесиках скатим с наклонной плоскости на пол, где насыпана горка песка. Доехав до нее, тележка увязнет в песке и остановится. Разровняем песок и вновь позволим тележке съехать с горки. Теперь скорость тележки будет уменьшаться гораздо медленнее. Если же убрать песок, то уменьшение скорости тележки и вовсе будет едва заметно.

    1.V =0, причина - песок, находящийся на плоскости.

    2.V уменьшается медленнее, т.к. влияет сила трения.

    3. Движение тележки по инерции, V приблизительно не меняется.

    Если равнодействующая всех сил, приложенных к материальной точке(телу)равна нулю, то скорость точки (тела) не изменяется ни по модулю, ни по направлению.

    Формулировка закона: Материальная точка(тело) Изолированное от воздействия внешних сил сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока приложенные силы не заставит его (её) изменить это состояние.

    Другими словами, тело сохраняет состояние покоя или движется равномерно прямолинейно, так как все равнодействующая всех сил, на него действующих, равна нулю. Пока это сохраняется, скорость тела либо равна нулю (в состоянии покоя), либо постоянна (при прямолинейном равномерном движении).

    Инерция - это явление, при котором тело сохраняет свою скорость при отсутствии действия на него других тел. Движение свободного тела называют движением по инерции, а сохранение им скорости называют явлением инерции.

    Первый закон Ньютона справедлив для инерциальных систем отсчёта. За такие системы отсчёта можно принять: гелиоцентрическую систему, движение поезда, движение тележки. Неинерциальной системой отсчёта также считается такая система отсчёта, которая движется с ускорением относительно неинерциальной системы отсчёта. Системы отсчёта, движущиеся с ускорением относительно Земли или каким либо телам, называются инерциальными.

    Экспериментальные подтверждения первого закона Ньютона.

    Монета, лежащая на плексигласе, закрывающем горлышко бутылки, при резком щелчке по плексигласу в горизонтальной плоскости падает в бутылку.

    При резком торможении автомобиля пассажиры, не пристегнутые ремнями безопасности, продолжают по инерции движение вперед, что может привести к травме.

    Вывод: таким образом, из первого закона Ньютона следует, что тело может двигаться как при наличии, так и при отсутствии внешнего воздействия.

    Инерция - явление сохранения скорости тел постоянной. Тело, не подверженное внешним воздействиям (называется свободным)находится в покое или движется равномерно и прямолинейно.

    Существуют такие системы отсчёта, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или действия тел скомпенсированы.

    Инерциальные системы отсчёта - система отсчёта с началом координат в центре Земли, система отсчёта, связанная с центром Солнца. Любая система, движущаяся относительно инерциальных СО, является инерциальной.

    Системы, движущиеся с ускорением, являются неинерциальными и в них законы Ньютона не выполняются.