Механические накопители электрической энергии. Как накопить и сохранить энергию из возобновляемых источников

Накопитель энергии – устройство, с которым большинство из людей постоянно сталкивается в быту. Всем знаком аккумулятор мобильного телефона, автомобиля, пальчиковые батарейки, которые не предусматривают повторной зарядки. Однако понятие энергетического накопления гораздо шире представлений среднестатистического индивидуума. Есть множество теорий, футуристических проектов и изысканий. Но интересно посмотреть, что реально может накапливать энергию и уже используется в самых разных областях деятельности человека.

Потенциальная энергия

Самый неочевидный накопитель собирает показатель потенциала, поднятого на высоту тела. Это устройство знакомо многим. Часы-ходики с массивными грузиками используют именно физический потенциал. Пока одна из гирь опускается, механизм работает. Для накопления запаса энергии требуется завести часы – переместить грузы определенным способом. Другие аккумуляторы потенциала работают не таким очевидным способом.

Гидроэлектростанции

Гидроэлектростанция – самый большой энергетический накопитель потенциального типа. Работает это следующим образом:

  • главная часть гидроэлектрической станции – огромная плотина. Она замыкает большую территорию, создавая водохранилище, которое наполняется рекой или другим источником воды;
  • в основании железобетонной стены станции находится основное инженерное решение для производства электричества. Падающая с большой высоты вода преобразует свою потенциальную энергию в кинетическую;
  • при воздействии потока воды на лопатки турбины кинетика преобразуется в электричество.

Гидроэлектростанции классического типа, а точнее, их водохранилища – накопители энергии потенциального типа. Этот источник относится к возобновляемому. Поток воды постоянно пополняет искусственное озеро, при этом предусмотрены методики отвода жидкости в период, когда объем водохранилища на максимуме, а потребности в производстве электричества нет.

Энергетические накопители потенциального типа несколько другого принципа действия используются в аккумулирующих резервуарах гидроэлектростанций. Такой тип инженерных решений относится к вспомогательному и применяется в совокупности с другим источником. Часто – в солнечных электростанциях, построенных в местностях с мягким климатом. Работает все следующим образом:

  • в период максимальной солнечной активности электроэнергия, которую производит солнечная станция, не нужна, потребности городов и энергосети, в общем, малы;
  • электричество направляется на работу насосов, которые закачивают воду в огромный искусственный резервуар;
  • в темное время суток, если нужно направить дополнительный поток электрической мощности в общую систему, включается механика гидроэлектростанции. Потенциал накопленной воды используется для работы турбин.

Станции, которые используют накопители энергии воды, становятся все более популярными. К достоинствам такого решения относится способность не только полностью использовать мощности основного производителя, но и гарантировать круглосуточный режим отдачи электричества в общую сеть.

Существуют и решения, оперирующие твердым грузом. К ним относятся системы, построенные на простой идее:

  • во время работы солнечных батарей или ветрогенераторов излишек их мощности направляется на двигатели, которые перемещают вагоны по рельсовому пути вверх, по наклонной поверхности;
  • в то время, когда солнца или ветра нет, тележки двигаются вниз, на их осях расположены генераторы, производящие электричество.

Достоинств у механического решения предостаточно. Здесь малые требования к мощности двигателей, используемых для подъема груза. Для перекачки воды нужно несравненно большие величины как токов, так и давления.

Накопители потенциальной энергии имеют одно неоспоримое достоинство: запасенное можно хранить практически без потерь крайне долго. Потери воды в огромном резервуаре из-за испарения почти незаметны, а если идет речь о поднятии груза, его легко зафиксировать механически в верхней точке.

Недостаток сбора потенциальной энергии также очевиден. Чтобы получить промышленные объемы использования или долговременную работу устройства в быту, нужно или оперировать огромными массами, так сказать, энергоносителя, или гарантировать низкое потребление преобразованной энергии.

Накопители тепловой энергии

Тепловые накопители – распространенные устройства. Самый знакомый рядовому потребителю – электрический нагревательный котел. Он накапливает тепло, которое затем используется для бытовых нужд, отопления.

Менее понятный класс – тепловые накопители энергии, выполняющие роль стабилизаторов. К ним относятся:

  • водонагреватели, построенные на вторичной схеме передачи тепла;
  • расширительные емкости солнечных коллекторов, которые не допускают перегрева теплоносителя и стабилизируют режим работы батареи;
  • теплоаккумулятор может строиться на принципе фазового перехода. Расплав нагревается до высокой температуры, при этом теплоноситель переходит из твердого состояния в жидкое.

Проблем у накопителей тепловой энергии достаточно много. К примеру:

  • энергию нужно использовать быстро. С течением времени содержимое накопителя просто теряет энергию, отдавая ее в окружающую среду;
  • построенные на фазовом переходе накопители сложны в эксплуатации. Здесь наблюдается изменение объема: если жидкость переводят в пар, приходится бороться с огромным давлением.

Современные системы тепловой защиты позволяют долго сохранять характеристики накопителя тепловой энергии. Но здесь играет роль баланса стоимости защиты и целевого использования энергии. Поэтому накопители тепла идеальны в роли компенсаторов. В это же время их эффективность в качестве мощного источника энергии со стабильными показателями отдачи весьма спорна.

Аккумуляторы энергии сжатого газа

Пневматический инструмент, газопоршневые генераторы, небольшие кары – вот краткий список устройств, которые используют энергию сжатого газа. Устройство накопителя энергии знакомо практически всем. Это надежная, прочная колба из стали, в которую под огромным давлением закачивается газ.

Уровень выхода энергии накопителя сжатого газа нестабилен. Он велик, пока давление внутри баллона близко к максимуму. И снижается по мере расходования газа. Для стабилизации выхода используются редукторы. Они обеспечивают постоянное давление на выходе, что не только создает оптимальные условия работы потребителя, но и продлевает срок эффективного расходования запаса газа.

Накопители энергии сжатого газа применяются и в роли компенсаторов. Стабилизация работы компрессора производится при помощи расширительной емкости. В нее закачивается газ основным двигателем, поддерживается конкретное давление. При использовании энергии пневмоинструментом, компрессор может включаться периодически, поддерживая стабильное состояние системы. Основная мощность поступает именно из накопителя, расширительного баллона, совмещенного с редуктором.

Главное достоинство аккумулятора сжатого газа – простота манипулирования. Соблюдается некий термический баланс, когда в режиме компенсатора выделенное тепло при сжатии газа соответствует количеству энергии при расширении рабочего тела. К другому плюсу относится надежность инженерного решения. Прочность баллона такова, что он может заправляться неоднократно, служить на протяжении десятков лет. Третий плюс – при наличии надежной перекрывающей арматуры или запайки емкости, газ может сохранять свои параметры и энергетику очень долго.

Накопители электрической энергии

Аккумуляцию электроэнергии можно проводить разными способами. Сегодня к самым распространенным и широко используемым средствам относятся конденсатор, ионистор, химические преобразователи, накопители заряда активных частиц.

Конденсатор

Данный класс аккумулятора электрической энергии – знакомое всем устройство, конструкцию, так называемой, лейденской банки проходят еще в школьном курсе физики. Заряд накапливается на двух пластинах. Современные конденсаторы имеют прокладку, изготовленную из полимера с высокими показателями пробоя. Это позволяет:

Соединенные параллельно элементы позволяют построить батарею с нужным показателем емкости. Данный тип накопителя не может сохранять энергию долго без потерь. К тому же, собирается ее довольно мало. Но при малом потреблении конденсатор может быть достаточно эффективен. Сегодня именно такие накопители используют в аварийных светодиодных лампах.

Во время питания конденсатор заряжается, при отсутствии энергоснабжения светильник работает в течение получаса, чтобы люди могли принять меры к устранению причин перебоя, лечь спать или перевести оборудование в режим консервации.

Ионистор

Ионисторы, или, как их еще называют, суперконденсаторы, используют несколько другую схему накопления энергии. Здесь заряд распределяется в объеме рабочего тела в виде заряженных частиц. В результате достигаются огромный (по сравнению с конденсаторами) срок хранения энергии и емкость, но наблюдается крайняя чувствительность к температуре. Чем ниже температура рабочей среды, тем меньше отдача тока от накопителя энергии.

Аккумуляторы химического преобразования

Электрохимическая ячейка – основа большинства автомобильных, мотоциклетных и других привычных типов аккумуляторов. Схема работы накопителя проста:

  • в результате взаимодействия пластины металла и кислоты образуются заряженные ионы;
  • в ходе работы соли осаждаются на пластине из катализатора;
  • по мере понижения насыщенности электролита аккумулятор истощается – уровень выдачи энергии снижается.

При зарядке происходит обратный процесс. Электролиз восстанавливает показатели электролита, переносит металл на пластину-донор. Достоинств у электрохимического аккумулятора множество. Можно получить стабильный и высокий выходной ток, что ценно для пуска мощного оборудования. Легко создать устройство с высокой емкостью, полезное для долгой работы различного оборудования.

К недостаткам электрохимической ячейки классического типа относится конечное число циклов заряда-разряда. Некоторое количество солей металла становятся инертными, пластины приходят в негодность, истощается электролит. Данные недостатки в большой степени нейтрализованы в гелевых батареях. Этот современный источник энергии содержит коллоидный электролит. В нем лучше проходят процессы образования ионов. Но есть и недостаток – повышается чувствительность к температуре. При ее понижении гель твердеет, показатель отдачи тока падает.

В качестве заключения

Накопители разного типа энергии можно рассматривать очень долго. Это механические – различные пружины. Кинетические – маховики большой массы, используемые, например, в троллейбусах. Аккумуляторы с разным типом носителя ионов – литиевые, никель-марганцевые, кадмиевые. Но использование любого типа накопителя, прежде всего, обуславливается балансом между его характеристиками и показателями потребления энергии.

Страница 10 из 23

Все рассмотренные выше НЭ имели электромеханическое устройство управления, что обусловливало их невысокую маневренность.

Рис. 2.7. Схемы подключения НЭЭ:
а - шунтовая; б - линейная
Накопители электрической энергии (НЭЭ) соединяются с ЭЭС посредством управляемого вентильного преобразователя*, время реверса мощности которого составляет 0,01 с, что определяет их высокую маневренность, а следовательно, возможность комплексного использования в ЭЭС.

*Так как накопление электрической энергии возможно только при постоянном токе.

К накопителям электрической энергии относятся:
топливные элементы (ТЭ);
электрохимические аккумуляторные батареи (ЭАБ);
сверхпроводниковые индуктивные накопители (СПИН);
емкостные накопители (ЕН).
Существует два способа подключения НЭЭ к энергосистеме- шунтовой и линейный, соответствующие им схемы приведены на рис. 2.7, а, б.
Рассмотрим подробнее блоки накопителей электрической энергии.

Устройство управления НЭЭ.

Оно может быть выполнено по трехфазной мостовой схеме, имеющей высокие технические показатели и хорошо зарекомендовавшей себя при эксплуатации существующих преобразователей большой мощности. Число мостов в устройстве управления НЭЭ определяется как реально выполнимой мощностью тиристорного моста, так и режимными соображениями, рассматриваемыми ниже.


Рис. 2.8. Схема последовательного включения модулей 12-пульсных преобразователей, составляющих УУ:
1 - аккумулирующий элемент; 2 - выключатель; 3- междуфазный реактор; 4 - преобразовательный мост; 5- трансформатор; 6 - трехфазная сеть
Каждый мост присоединен к сети переменного тока через отдельный трансформатор. С целью обеспечения 12-пульсного режима преобразования, обладающего рядом преимуществ по сравнению с шестипульсным (меньше пульсации постоянного напряжения, лучше гармонический состав переменного напряжения и др.), вторичные обмотки одной половины трансформаторов соединены в «треугольник», а другой- в «звезду» (рис. 2.8).
Для увеличения коэффициента мощности НЭЭ, определяемого углами регулирования и коммутации преобразовательного устройства, а также степенью искажения формы кривой переменного напряжения, к шинам переменного тока станции подключаются различные компенсирующие устройства - синхронные компенсаторы, статические тиристорные компенсаторы, фильтрокомпенсирующие устройства. Потребление реактивной мощности может быть уменьшено путем разделения преобразователя на ряд последовательно включенных модулей.

В процессе работы углы управления всех модулей, кроме одного, поддерживаются равными 0°. Один из них имеет угол, определяющийся требуемым напряжением. Все модули, имеющие нулевой угол, требуют лишь минимальной реактивной мощности - для коммутации.
На рис. 2.8 показана возможная схема преобразователя, выполненного в целях уменьшения потребления реактивной мощности. Преобразователь представляет собой последовательное соединение 12-пульсных модулей, содержащих силовые трансформаторы. Каждый модуль рассчитан на 4,5 кВ и состоит из двух 6-пульсных мостов, соединенных параллельно с междуфазным реактором, уравновешивающим ток. Два модуля имеют значения тока 50 кА, два других - 30 и 20 кА. Например, при максимальном токе АЭ накопителя каждый 6-пульсный мост обеспечивает постоянный ток 25 кА. Если 12-пульсный модуль закоротить механическим выключателем при нулевом значении напряжения и затем отключить его от трехфазной сети, улучшится полный КПД преобразователя, так как на четырех последовательно соединенных тиристорах устранится падение прямого напряжения.
Значение выдаваемой активной мощности НЭЭ должно во всех режимах его работы определяться системными требованиями и не зависеть от изменяющегося напряжения на самом АЭ. Один из способов обеспечения выполнения этого условия - регулирование углов управления вентилей. Применение управляемых преобразователей в в качестве связующего звена между АЭ и сетью переменного тока позволяет за счет соответствующего изменения углов включения вентилей в течение цикла заряда- разряда НЭЭ осуществить практически любой закон регулирования мощности. При этом мощность на шинах переменного напряжения будет зависеть от соотношения между напряжением на АЭ и противо-ЭДС преобразователя, определяемой значением углов управления. Однако этот способ управления имеет ряд ограничений. Поскольку мощность преобразовательного устройства НЭЭ может достигать нескольких сотен мегаватт, плечи мостов должны собираться из последовательно-параллельно включенных вентилей. С целью ограничения перенапряжений параллельно к ним необходимо подключать активно-емкостные демпфирующие цепочки. При глубоком регулировании преобразователей на плечах моста и его отдельных вентилях появляются скачки обратного напряжения. Необходимые для их ограничения параметры демпфирующих цепочек становятся, неприемлемыми из-за потерь мощности в них. При применении других защитных устройств (например, лавинных диодов) данная проблема остается. Использование тиристоров в мощных преобразовательных установках еще больше увеличивает число вентилей в плечах моста и предъявляет более жесткие требования к устройствам их защиты.


Рис. 2.9. Схема переключения преобразователей УУ


Рис. 2.10. Внешняя характеристика преобразователя
С другой стороны, при глубоком симметричном регулировании за счет фазового сдвига тока относительно напряжения на шинах станции преобладает реактивная составляющая мощности.

Для ее компенсации требуется неприемлемо большая мощность компенсирующих устройств (в пределе равная мощности станции). Эти обстоятельства затрудняют возможность регулирования,в широких пределах углов управления. Увеличить их значения можно за счет применения поочередного управления преобразователей, при котором одна часть мостов работает в выпрямительном режиме, а другая - в инверторном. При таком несимметричном законе управления можно расширить предел регулирования выходного напряжения преобразователя при приемлемом коэффициенте мощности станции. Однако полностью возложить функцию управления НЭЭ на регулирование углов включения вентилей, видимо, нельзя. Его целесообразно сочетать с другими способами обеспечения независимости мощности на шинах НЭЭ от напряжения на АЭ.
На рис. 2.9 изображена схема УУ НЭЭ (для случая, когда преобразовательное устройство станции состоит из двух мостов), позволяющая изменить противо-ЭДС преобразователя (в зависимости от напряжения на АЭ) за счет переключения мостов из параллельного соединения в последовательное при заряде НЭЭ и, наоборот, при его разряде. Она применима для любого числа преобразовательных мостов на станции. Анод каждого моста должен соединяться через коммутационные аппараты с анодом и катодом предыдущего по ходу тока моста и анодом последующего, а катод - с анодом и катодом следующего по ходу тока моста и катодом предыдущего.
Рассмотрим работу НЭЭ в режиме инвертирования, так как именно в нем важно обеспечить независимость мощности на шинах накопителя от напряжения на АЭ.
Рассмотрим внешнюю характеристику преобразователя для случая, когда значение активной мощности на шинах переменного напряжения поддерживается близким к постоянному. В начальный момент (при максимальном напряжении АЭ) преобразователь работает с последовательно соединенными мостами. Поддерживание заданного тока разряда обеспечивается за счет регулирования углов управления инвертора (точки 1-2 на рис. 2.10). В момент уменьшения напряжения на АЭ до значения, при котором возможно поддерживание данного значения тока за счет работы одного моста (точка 2), производят переключение мостов из последовательного соединения в параллельное, что соответствует переходу с точки 2 внешней характеристики преобразователей на точку 3. При этом токи, протекающие через преобразовательные мосты, а следовательно, ток и мощность станции на шинах переменного напряжения не изменяются, так как первичные обмотки трансформаторов соединены параллельно. Положение точки 4 определяется процентом недоиспользования АЭ.
Суммарное число мостов станции должно определяться допустимым пределом регулирования углов управления вентилей и задаваемым коэффициентом использования АЭ. Схема (см. рис. 2.9) построена так, что в режиме инвертирования при переключениях станции не отключаются от ЭЭС и коммутационные аппараты не обрывают рабочий постоянный ток. Поэтому их изготовление не вызовет дополнительных трудностей. Кратковременные перегрузки мостов при переключениях не превосходят допустимые для преобразователей передачи постоянного тока.
Описанная схема в сочетании с регулированием углов управления вентилями позволяет поддерживать требуемую активную мощность, выдаваемую станцией, вплоть до полного разряда АЭ без перерыва энергоснабжения. При ее помощи можно обеспечить независимость потребляемой активной мощности от напряжения на АЭ и в режиме его заряда (при работе мостов в режиме выпрямителя), но с отключением станции от ЭЭС на время перекоммутаций.
Другой способ регулирования мощности НЭЭ - подключение АЭ к преобразователю станции по частям. Для этого АЭ необходимо разбить на секции, каждая из которых подключается независимо друг от друга к шинам постоянного напряжения преобразовательного устройства. При этом мощность станции колеблется около заданного среднего значения; полностью заряженные или разряженные секции необходимо отключать от преобразователя перед очередным подключением. Достаточно мелкое дробление АЭ на секции в сочетании с регулированием углов управления преобразователя позволит уменьшить до допустимого уровня неравномерность изменения активной мощности АЭ в течение цикла работы.
Другие известные способы регулирования цепей заряда- разряда конденсаторных батарей (использование трансформаторов с регулированием напряжения под нагрузкой, переключение конденсаторов батареи из последовательного соединения в параллельное и наоборот, подключение преобразователей к сети переменного тока через индуктивно-емкостные статические преобразователи, использование в качестве преобразовательных устройств компенсированных преобразователей с искусственной коммутацией тока вентилей и т. д.) требуют специального рассмотрения.
Таким образом, НЭЭ с устройством управления на базе 12-пульсного преобразователя при применении рассмотренных выше способов будет отвечать всем требованиям, предъявляемым к источникам пиковой мощности в ЭЭС.
Перейдем теперь к рассмотрению возможных типов аккумулирующих устройств для НЭЭ.
Электрохимические накопители энергии. Электрохимические накопители энергии или электрохимические аккумуляторные батареи - один из самых распространенных типов накопителей.
Электрохимическая аккумуляторная батарея (ЭАБ) состоит из многих элементов, соединенных последовательно и параллельно. Заряд ее происходит во внепиковые часы, а разряд -в часы пиков нагрузки. В процессе заряда электроэнергия электрохимическим путем преобразуется в химическую. При разряде накопленная энергия высвобождается в процессе обратной реакции. Проделана большая работа по совершенствованию ЭАБ. Оказалось, что свинцовые аккумуляторы можно применять и в ЭЭС. Однако стоимость таких элементов высока. Новые типы аккумуляторов основаны на использовании химических реакций таких материалов, как цинк, сера, натрий и т. д., имеющихся в достаточном количестве и являющихся сравнительно дешевыми. Испытания хлор-цинковых аккумуляторов, работающих при низких температурах, дают обнадеживающие результаты. Из аккумуляторов, требующих для работы более высоких температур, можно упомянуть натрий-серные и литий-серные. Особенно успешно ведутся лабораторные испытания натрий-серных ЭАБ.
Характеристики перспективных типов аккумуляторов для выравнивания пиков нагрузки приведены в табл. 2.3.
Электрохимические аккумуляторные батареи имеют КПД, достигающий 65-70%. Ожидается, что перспективные аккумуляторы будут иметь срок службы около 20 лет при удельных капиталовложениях в установку порядка 150 долл/кВт и удельной энергоемкости 250 кВт-ч/м3.
Недостатки ЭАБ - ограниченное число зарядно-разрядных циклов (не более 500), малое время хранения энергии и отрицательное экологическое воздействие.
Таблица 2.3


Материал, используемый в качестве катода, анода

Электролит

Температура, °С

Возможная
плотность
энергии,
Вт-ч/кг

Возможная
плотность
мощности,
Вт/кг

Оксид свинца

Цинк - хлор

Водный раствор

Натрий - сера

Литий - сера

Накопители электрической энергии большой емкости

Накопители электрической энергии являются важнейшим элементом будущих активно-адаптивных сетей. Накопители энергии выполняют ряд функций:

  • выравнивание графиков нагрузки в сети (накопление электрической энергии в периоды наличия избыточной (дешевой) энергии и выдачу в сеть в периоды дефицита);
  • обеспечение в сочетании с устройствами FACTS повышения пределов устойчивости;
  • обеспечение бесперебойного питания особо важных объектов, собственных нужд электростанций и подстанций;
  • демпфирование колебаний мощности, стабилизация работы малоинерционных децентрализованных источников электрической энергии.

Состав услуг АО «НТЦ ФСК ЕЭС» по внедрению накопителей электрической энергии большой емкости:

  • технико-экономическое обоснование
  • рекомендации по выбору мест установки
  • проектирование гибридных накопителей
  • рекомендации по структуре накопителей
  • реализация систем управления накопителями

Справочная информация

Накопители энергии делятся на электростатические, к которым относятся аккумуляторные батареи большой энергоёмкости (АББЭ), накопители энергии на основе молекулярных конденсаторов, накопители энергии на основе низкотемпературных сверхпроводников.

Электростатические аккумуляторные батареи большой энергоёмкости (АББЭ)
Все типы электростатических накопителей связываются с сетью через устройства силовой электроники - преобразователи тока или напряжения.

В настоящее время рядом зарубежных компаний выпускается и осуществляется довольно масштабное практическое применение АББЭ.

Опыт применения АББЭ:

Тип электролита

Объект

Мощность, МВт

Время работы, мин

Год установки

Серно-кислотный

BEWAG, электроснабжение Зап. Берлина

Резервирование и поддержание частоты маломощной сети Пуэрто-Рико

Чинно (Калифорния), различные объекты для исследования возможностей регулирования нагрузки, частоты, напряжения и реактивной мощности

Никель-кадмиевый

GVEA, обеспечение бесперебойного электроснабжения прибрежных районов Аляски вблизи г. Анкоридж

Серно-натриевый

Ветряная станция Rokkacho, Япония. Всего внедрено – 100 объектов.

2008
(самый крупный)

Цинк-бромный

ПС Detroit Edison Site, Мичиган. Для поддержания напряжения собственных нужд

Ванадиум-редоксный

Один из крупных высокотехнологичных заводов в Японии. Выравнивание графика нагрузок

Накопители энергии на основе молекулярных конденсаторов
Молекулярные накопители проходят стадию создания и испытания опытных образцов. Сверпроводниковый Индуктивный Накопитель Энергии (СПИНЭ) - это одно из применений сверхпроводимости. Практическое применение в настоящее время нашли передвижные СПИНЭ сравнительно небольшой энергоемкости (до 106 Дж.), широкое применение СПИНЭ возможно после разработки и создания СПИНЭ на базе высокотемпературных сверхпроводников. СПИНЭ могут находить применение в электроэнергетике как одно из эффективных средств повышения режимной надежности и устойчивости электроэнергетических систем. При этом выделяются такие свойства индуктивных накопителей, как быстродействие, высокий КПД, возможность полной автоматизации ввода и вывода энергии, большая удельная энергоемкость, регулирование активной и реактивной мощности. Ожидается, что к 2016-2020 гг. будут созданы недорогие системы хранения энергии достаточной энергоемкости.

Электромагнитные накопители электроэнергии

К электромагнитным накопителям электроэнергии относятся два вида комплексов:

  • синхронные машины с преобразователями частоты в первичной цепи с маховиками на валу;
  • асинхронизированные машины с маховиками на валу.
В настоящее время нет практических ограничений по созданию агрегатов первого типа мощности до 300 – 400 МВт и второго типа мощности 800 – 1600 МВт. Первый тип агрегатов имеет больший диапазон изменения скорости и большую способность использования кинетической энергии вращающихся машин, второй тип способен работать в диапазоне регулирования частоты вращения 50% от синхронной, имеет меньшую мощность преобразовательного устройства, чем в первом случае (в первом случае мощность преобразователя равна мощности машин, во втором – пропорциональна глубине регулирования), обладает меньшей стоимостью и может быть выполнен на большую мощность. В России был разработан эскизный проект маховикового накопителя на основе асинхронизированной машины вертикального исполнения мощностью 200 МВт.

Возможно выполнение накопителя энергии на основе супермаховиков. Cупермаховик изготавливается из сверхпрочного углеродного волокна, получаемого на основе нанотехнологий, и имеет удельную энергоемкость 5–15 МДж/кг или 1,4–4,17кВт.час/кг, что недостижимо для всех известных накопителей энергии (электрохимические аккумуляторы, конденсаторы, пружины). Это объясняется тем, что супермаховик можно разогнать до огромных скоростей.