Загар за 2 дня естественным образом. Как получить красивый загар на море: эффективные способы, секреты и рекомендации

Элементный состав организма

По химическому составу клетки разных организмов могут заметно отличаться, однако состоят они из одинаковых элементов. В клетках обнаружено около 70 элементов периодической таблицы Д.И. Менделеева, но только 24 из них имеют важное значение и встречаются в живых организмах постоянно.

Макроэлементы – кислород, углеводород, водород, азот – входят в состав молекул органических веществ. К макроэлементам в последнее время относят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента.

Магний входит в состав хлорофилла; железо – гемоглобина; фосфор – костной ткани, нуклеиновых кислот; кальций – костей, черепашек моллюсков, сера – в состав белков; калий, натрий и хлор-ионы берут участие в смене потенциала клеточной мембраны.

Микроэлементы представлены в клетке сотыми и тысячными долями процента. Это цинк, медь, йод, фтор, молибден, бор и др.

Микроэлементы входят в состав ферментов, гормонов, пигментов.

Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0,000001%. Это уран, золото, ртуть, цезий и др.

Вода и её биологическое значение

Вода количественно занимает среди химических соединений первое место во всех клетках. В зависимости от типа клеток, их функционального состояния, вида организма и условий его нахождения её содержание в клетках существенно колеблется.

Клетки костной ткани содержат не больше 20% воды, жировой ткани – около 40%, мышечные клетки – 76%, а клетки зародыша – более 90%.

Замечание 1

В клетках любого организма с возрастом количество воды заметно уменьшается.

Отсюда – вывод, что чем выше функциональная активность организма в целом и каждой клетки отдельно тем большим в них есть содержание воды, и наоборот.

Замечание 2

Обязательным условием жизненной активности клеток является наличие воды. Она является основной частью цитоплазмы, поддерживает её структуру и стойкость коллоидов, входящих в состав цитоплазмы.

Роль воды в клетке определяется её химическими и структурными свойствами. Прежде всего это связано с небольшим размером молекул, их полярностью и способностью соединяться с помощью водородных связей.

Водородные связи образуются при участии атомов водорода, соединённых с электронегативным атомом (обычно кислородом или азотом). При этом атом Гидрогена приобретает настолько большой позитивный заряд, что может образовать новую связь с другим электронегативным атомом (кислорода или азота). Так же связываются друг с другом молекулы воды, у которых один конец имеет позитивный заряд, а другой – негативный. Такую молекулу называют диполем . Более электронегативный атом кислорода одной молекулы воды притягивается к позитивно заряженному атому водорода другой молекулы с образованием водородной связи.

Благодаря тому, что молекулы воды полярные и способны образовывать водородные связи, вода является совершенным растворителем для полярных веществ, которые называются гидрофильными . Такими являются соединения ионного характера, в которых заряженные частички (ионы) диссоциируют (разделяются) в воде при растворении вещества (соли). Такую же способность имеют и некоторые неионные соединения, в молекуле которых находятся заряженные (полярные) группы (в сахарах, аминокислотах, простых спиртах это ОН-группы). Вещества, состоящие из неполярных молекул (липиды), в воде практически нерастворимы, то есть они гидрофобы .

При переходе вещества в раствор, его структурные частички (молекулы или ионы) приобретают возможность двигаться свободнее, а, соответственно, возрастает реакционная способность вещества. Благодаря этому вода является основной средой, где происходит большинство химических реакций. Кроме того, все окислительно-восстановительные реакции и реакции гидролиза проходят при непосредственном участии воды.

Вода имеет наибольшую удельную теплоёмкость среди всех известных веществ. Это означает, что при существенном увеличении тепловой энергии температура воды повышается сравнительно немного. Это обусловлено использованием значительного количества этой энергии на разрыв водородных связей, которые ограничивают подвижность молекул воды.

Благодаря большой теплоёмкости вода служит защитой для тканей растений и животных от сильного и быстрого повышения температуры, а высокая теплота парообразования является основой для надёжной стабилизации температуры тела организма. Необходимость значительного количества энергии для испарения воды вызвана тем, что между её молекулами существуют водородные связи. Эта энергия поступает из окружающей среды, потому испарение сопровождается охлаждением. Этот процесс можно наблюдать во время потоотделения, в случае тепловой задышки у собак, важна она и в процессе охлаждения транспирирующих органов растений, особенно в пустынных условиях и в условиях сухих степей и периодов засухи в других регионах.

Вода имеет так же высокую теплопроводность, чем обеспечивается равномерное распределение тепла по организму. Таким образом нет риска возникновения локальных «горячих точек», которые могут стать причиной повреждения элементов клеток. Значит, высокая удельная теплоёмкость и высокая для жидкости теплопроводность делают воду идеальной средой для поддержания оптимального теплового режима организма.

Для воды характерно высокое поверхностное натяжение. Это её свойство очень важно для адсорбционных процессов, движения растворов по тканях (кровообращение, восходящее и нисходящее движение по растению и т.п.).

Вода используется как источник кислорода и водорода, которые выделяются во время световой фазы фотосинтеза.

К важным физиологическим свойствам воды относится её способность растворять газы ($O_2$, $CO_2$ и др.). Кроме того, вода как растворитель участвует в процессе осмоса, что играет важную роль в жизнедеятельности клеток и организма.

Свойства углеводорода и его биологическая роль

Если не брать во внимание воду, можно сказать, что большая часть молекул клетки принадлежит к углеводородным, так называемым органическим, соединениям.

Замечание 3

Углеводород, имея уникальные химические способности, фундаментальные для жизни, составляет её химическую основу.

Благодаря небольшому размеру и наличию на внешней оболочке четырёх электронов атом углеводорода может образовывать четыре крепких ковалентных связи с другими атомами.

Самое важное значение имеет способность атомов углеводорода соединяться друг с другом, образуя цепи, кольца и, в конце концов, скелет больших и сложных органических молекул.

К тому же углеводород легко образует ковалентные связи с другими биогенными элементами (обычно с $H, Mg, P, O, S$). Именно этим объясняется существование астрономического количества разнообразных органических соединений, которые обеспечивают существование живых организмов во всех его проявлениях. Разнообразие их проявляется в структуре и размерах молекул, их химических свойствах, степени насыщенности карбонового скелета и различной форме молекул, что определяется углами внутримолекулярных связей.

Биополимеры

Это высокомолекулярные (молекулярная масса 103 – 109) органические соединения, макромолекулы которых состоят из большого количества звеньев, которые повторяются, - мономеров.

К биополимерам относятся белки, нуклеиновые кислоты, полисахариды и их производные (крахмал, гликоген, целлюлоза, гемицеллюлоза, пектиновые вещества, хитин и пр.). Мономерами для них являются соответственно аминокислоты, нуклеотиды и моносахариды.

Замечание 4

Около 90% сухой массы клетки составляют биополимеры: у растений преобладают полисахариды, а у животных – белки.

Пример 1

В клетке бактерий находится около 3 тыс. видов белков и 1 тыс. нуклеиновых кислот, а у человека количество белков оценивают в 5 млн.

Биополимеры не только образуют структурную основу живых организмов, но и в процессах жизнедеятельности играют проводящую роль.

Структурной основой биополимеров являются линейные (белки, нуклеиновые кислоты, целлюлоза) или разветвлённые (гликоген) цепи.

И нуклеиновых кислот, имунные реакции, реакции обмена веществ - и осуществляются благодаря образованию биополимерных комплексов и другим свойствам биополимеров.

В человеческом организме обнаружено 86 химических элементов, входящих в состав Периодической системы химических элементов Д.И. Менделеева. Эти элементы условно разделяют на четыре группы:

  • макроэлементы – элементы, составляющие основную массу клетки (приблизительно 98-99% в пересчете на сухую массу), среди которых углерод (C), водород (H), кислород (O) и азот (N);
  • элементы, содержание которых в клетке, в пересчете на сухую массу, составляет около 1,9%. Это калий (K), натрий (Na), кальций (Ca), магний (Mg), сера (S), фосфор (P), хлор (Cl) и железо (Fe);
  • элементы, содержание которых в клетке, в пересчете на сухую массу, менее 0,01% — микроэлементы. Это цинк (Zn), медь (Cu), фтор (F), йод (I), кобальт (Co), молибден (Mo) и др.
  • элементы, содержание которых в клетке, в пересчете на сухую массу, менее 0,00001% — ультрамикроэлементы: золото (Au), уран (U), радий (Ra) и др.

Роль химических элементов в клетках живых организмов

Каждый элемент, входящий в состав живого организма, отвечает за выполнение определенной функции (табл. 1).

Таблица 1.Роль химических элементов в клетках живых организмов.

Химический элемент Вещества, в которых химический элемент содержится Процессы, в которых химический элемент участвует

Углерод, водород, кислород, азот

Белки, нуклеиновые кислоты, липиды, углеводы и др. органические вещества

Синтез органических веществ и весь комплекс функций, осуществляемых этими органическими веществами

Калий, натрий

Обеспечение функции мембран, в частности, поддержание электрического потенциала клеточной мембраны, работы Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Участие в процессе свертывания крови

Фосфат кальция, карбонат кальция

Костная ткань, зубная эмаль, раковины моллюсков

Пектат кальция

Формирование срединной пластинки и клеточной стенки у растений

Хлорофилл

Фотосинтез

Формирование пространственной структуры белка за счет образования дисульфидных мостиков

Нуклеиновые кислоты, АТФ

Синтез нуклеиновых кислот

Поддержание электрического потенциала клеточной мембраны, работы Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Активизация пищеварительных ферментов желудочного сока

Гемоглобин

Транспорт кислорода

Цитохромы

Перенос электронов при фотосинтезе и дыхании

Марганец

Декарбоксилазы, дегидрогеназы

Окисление жирных кислот, участие в процессах дыхания и фотосинтеза

Гемоцианин

Транспорт кислорода у некоторых беспозвоночных

Тирозиназа

Образование меланина

Витамин В 12

Формирование эритроцитов

Алькогольдегидрогеназа

Анаэробное дыхание у растений

Карбоангидраза

Транспорт СО 2 у позвоночных

Фторид кальция

Костная ткань, зубная эмаль

Тироксин

Регуляция основного обмена

Молибден

Нитрогеназа

Фиксация азота

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров — белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор — в состав нуклеиновых кислот, железо — в состав гемоглобина, а магний — в состав хлорофилла. Кальций играет важную роль в обмене веществ

Часть химических элементов, содержащихся в клетке, входит в состав неорганических веществ — минеральных солей и воды. Минеральные соли находятся в клетке, как правило, в виде катионов (К + , Na + , Ca 2+ , Mg 2+) и анионов (HPO 4 2- , H 2 PO 4 — , СI — , НСО 3 —), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды, так слабощелочная среда многих клеток и ее рН почти не изменяется, потому что в ней постоянно поддерживается определенное соотношение катионов и анионов.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Как отразится на жизнедеятельности клетки и организма недостаток какого-либо необходимого элемента? Приведите примеры.
Ответ Недостаток какого-либо микроэлемента приводит к уменьшению синтеза того органического вещества, в состав которого этот микроэлемент входит. В результате нарушаются процессы роста, обмена веществ, воспроизведения и т.д. Например, дефицит йода в пище приводит к общему падению активности организма и разрастанию щитовидной железы - эндемическому зобу. Недостаток бора вызывает отмирание верхушечных почек у растений. Нехватка селена может привести к возникновению раковых заболеваний у человека и животных.

Больше, других - меньше.

На атомарном уровне различий между органическим и неорганическим миром живой природы нет: живые организмы состоят из тех же атомов, что и тела неживой природы. Однако соотношение разных химических элементов в живых организмах и в земной коре сильно различается. Кроме того, живые организмы могут отличаться от окружающей их среды по изотопному составу химических элементов.

Условно все элементы клетки можно разделить на три группы.

Макроэлементы

Цинк - входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина

Медь - входит в состав окислительных ферментов, участвующих в синтезе цитохромов.

Селен - участвует в регуляторных процессах организма.

Ультрамикроэлементы

Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото , серебро оказывают бактерицидное воздействие, подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий . Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще мало понятны.

Молекулярный состав клетки

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Химический состав клетки" в других словарях:

    Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения. Клеточная стенка.… … Биологическая энциклопедия

    Своеобразие внутриклеточного строения красных водорослей складывается как из особенностей обычных клеточных компонентов, так и из наличия специфических внутриклеточных включений. Клеточные оболочки. В клеточных оболочках красных… … Биологическая энциклопедия

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag 2S… …

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag2S серебряный … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия

    Термин Биология был предложен выдающимся французким естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 году для обозначения науки о жизни как особым явлении природы. Сегодня биология представляет собой комплекс наук, изучающих… … Википедия