В одной коробке вся вселенная помещается. Вселенная в господнем компьютере

Макромир - это часть реальной объективности мира, в котором существует человек. Оглянитесь вокруг, макромир - это все, что вы видите, и все, что окружает вас. В нашей части объективной реальности существуют как объекты, так и целые системы. Они включают также живые, неживые и искусственные объекты.

Существует еще одно, очень интересное, определение макромира.

Макромир - это мир, который существовал до появления науки квантовая физика. В макромире объекты и предметы исследовали старыми методами физики, которые не давали полного представления о том или ином предмете. материальный макромир космологический вселенная

Например, сапог - считали предметом, который сделан из кожи и сшит нитками. Ученые не знали, что кожа состоит из молекул, которые в свою очередь состоят из атомов, которые опять же состоят из множества частиц. Такой сапог - предмет из макромира. Однако такое определение используют только ученые физики.

Объекты макромира - макрообъекты, образуют сложные системы, функционирование которых зависит от множества входящих в них элементов. Так, например, закон сохранения энергии не работает в квантовой физике. В целом же, физика макромира это совокупность тех физических законов, согласно которым происходят те или иные явления, создаются машины и механизмы.

Но макромир не может существовать вне мегамира и микромира. Человечество живет на планете Земля, которая является одной из планет Солнечной системы, относящейся к бесконечно огромному космосу.

Частицами, связывающими микро- и макроуровни материи, считают молекулы. Они, состоящие из атомов, построены аналогично, но объем, занимаемый здесь электронными орбиталями, несколько больше, и молекулярные орбитали ориентированы в пространстве. В результате каждая молекула имеет определенную форму. Для сложных молекул, особенно органических, форма имеет решающее значение. Состав, пространственное строение молекул определяют свойства вещества. Виды связей ионов, структуру веществ и молекул, химические системы и химические реакции рассмотрим позже при изучении темы «Химические системы и процессы».

При определенных условиях однотипные атомы и молекулы могут собираться в огромные совокупности -- макроскопические тела (вещество). Вещество -- вид материи; то, из чего состоит весь окружающий мир. Вещества состоят из мельчайших частиц -- атомов, молекул, ионов, элементарных частиц, имеющих массу и находящихся в постоянном движении и взаимодействии. Существует огромное множество веществ, различных по составу и свойствам. Вещества делятся на простые, сложные, чистые, неорганические и органические. Свойства веществ можно объяснить и предсказать на основе их состава и строения.

Вещество простое состоит из частиц (атомов или молекул), образованных атомами одного химического элемента. Например, 0 2 (кислород), 0 3 (озон), S (сера), Ne (неон) -- простые вещества.

Вещество сложное состоит из частиц, образованных атомами различных химических элементов. Например, H 2 S0 4 (серная кислота); FeS (сульфид железа); СН 4 (метан) -- сложные вещества.

Вещество чистое -- вещество, состоящее из одинаковых частиц (молекул, атомов, ионов), обладающее определенными специфическими свойствами. Для очистки веществ от примесей используют различные методы: перекристаллизацию, дистилляцию, фильтрование.

Вещества неорганические -- это химические соединения, образуемые всеми химическими элементами (кроме соединений углерода, относящихся к органическим веществам). Неорганические вещества образуются на Земле и в космосе под воздействием природных физико-химических факторов. Известно около 300 тысяч неорганических соединений. Они образуют практически всю литосферу, гидросферу и атмосферу Земли. В их состав могут входить атомы всех химических элементов, известных в настоящее время, в различных сочетаниях и количественных соотношениях. Кроме того, огромное количество неорганических веществ получают в научных лабораториях и на химических предприятиях искусственно. Все неорганические вещества делятся на группы со сходными свойствами (классы неорганических соединений).

Вещества органические -- это соединения углерода с некоторыми другими элементами: водородом, кислородом, азотом, серой. Из соединений углерода к органическим не относятся оксиды углерода, угольная кислота и ее соли, являющиеся неорганическими соединениями. Название "органические" эти соединения получили в связи с тем, что первые представители этой группы веществ были выделены из тканей организмов. Долгое время считалось, что подобные соединения нельзя синтезировать в пробирке, вне живого организма. Однако в первой половине XIX в. ученым удалось получить искусственно вещества, которые ранее извлекали только из тканей животных и растений или продуктов их жизнедеятельности: мочевину, жир и сахаристое вещество. Это послужило доказательством возможности искусственного получения органических веществ и началом новых наук -- органической химии и биохимии. Органические вещества обладают рядом свойств, отличающих их от неорганических веществ: они неустойчивы к действию высоких температур; реакции с их участием протекают медленно и требуют особых условий. К органическим соединениям относятся нуклеиновые кислоты, белки, углеводы, липиды, гормоны, витамины и многие другие вещества, играющие основную роль в построении и жизнедеятельности растительных и животных организмов. Пища, топливо, многие лекарства, одежда -- все это состоит из органических веществ.

ТЕМА-4
1 . Определите понятия: мегамир, макромир, микромир, наномир. Связаны ли они? Определите понятия: мегамир, макромир, микромир, наномир. Связаны ли они? Мегамир – это планеты, звездные комплексы, галактики, мегагалактики – мир огромных космических масштабов и скоростей, расстояние, в котором измеряется Светловыми годами, а время существования космических объектов – миллионами и миллиардами лет.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время – в секундах,минутах, часах, годах.

Микромир - это молекулы, атомы, элементарные частицы – мир предельно малых, непосредственно ненаблюдаемых микрообъектов, пространсвенная размерность которых исчесляется от 10-8 до 10-16см, а время жизни – от бесконечности до 10 – 24 с.

Наномиир - это часть реального, привычного нам мира, только часть эта настолько малых размеров, что увидеть ее с помощью обычного человеческого зрения совершенно невозможно.

Они тесно связаны между собой.

^ 2. Дайте определение вакуума.

Ва́куум (от лат. vacuum - пустота) - среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Также вакуумом называют состояние газа, для которого средняя длина пробега его молекул сравнима с размерами сосуда или больше этих размеров.

3. Что такое наномир? Что такое нанотехнология? Чем отличается наномир от нанотехнологий?

Нанотехнология – междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путем контролируемого манипулирования отдельными атомами и молекулами.

ННаномиир - это часть реального, привычного нам мира, только часть эта настолько малых размеров, что увидеть ее с помощью обычного человеческого зрения совершенно невозможно.

Нанотехнология относится именно к микромиру, хотя нанометры это 10 в -9 степени метра. А наномир – это микро-микромир. Структура наномира – это структура радиоэфира Фарадея-Максвелла.ЕЕ элементы имеют размер 10 в – 35 степени метра, т.е на 25 порядков мельче атома водорода.

4. Где используется вакуум?

4 . Экспериментальные исследования испарения и конденсации, поверхностных явлений, некоторых тепловых процессов, низких температур, ядерных и термоядерных реакций осуществляются в вакуумных установках. Основной инструмент современной ядерной физики - ускоритель заряженных частиц - немыслим без вакуума. Вакуумные системы применяются в химии для изучения свойств чистых веществ, изучения состава и разделения компонентов смесей, скоростей химических реакций.Техническое применение вакуума непрерывно расширяется, но с конца прошлого века и до сих пор наиболее важным его применением остается электронная техника. В электровакуумных приборах вакуум является конструктивным элементом и обязательным условием их функционирования в течение всего срока службы. Низкий и средний вакуум используется в осветительных приборах и газоразрядных устройствах. Высокий вакуум - в приемно-усилительных и генераторных лампах. Наиболее высокие требования к вакууму предъявляются при производстве электронно-лучевых трубок и сверхвысокочастотных приборов. Для работы полупроводникового прибора вакуум не требуется, но в процессе его изготовления широко используется вакуумная технология. Особенно широко вакуумная техника применяется в производстве микросхем, где процессы нанесения тонких пленок, ионного травления, электронолитографии обеспечивают получение элементов электронных схем субмикронных размеров.В металлургии плавка и переплав металлов в вакууме освобождает их от растворенных газов, благодаря чему они приобретают высокую механическую прочность, пластичность и вязкость. Плавкой в вакууме получают безуглеродистые сорта железа для электродвигателей, высокоэлектропроводную медь, магний, кальций, тантал, платину, титан, цирконий, бериллий, редкие металлы и их сплавы. В производстве высококачественных сталей широко применяется вакуумирование. Спекание в вакууме порошков тугоплавких металлов, таких, как вольфрам и молибден, является одним из основных технологических процессов порошковой металлургии. Сверхчистые вещества, полупроводники, диэлектрики изготавливаются в вакуумных кристаллизационных установках. Сплавы с любым соотношением компонентов могут быть получены методами вакуумной молекулярной эпитаксии. Искусственные кристаллы алмаза, рубина, сапфира получают в вакуумных установках. Диффузионная сварка в вакууме позволяет получать не­разъемные герметичные соединения материалов с сильно разли чающимися температурами плавления. Таким способом соединяют керамику с металлом, сталь с алюминием и т. д. Высококачественное соединение материалов с однородными свойствами обеспечивает электронно-лучевая сварка в вакууме. В машиностроении вакуум применяется при исследованиях процессов схватывания материалов и сухого трения, для нанесения упрочняющих покрытий на режущий инструмент и износостойких покрытий на детали машин, захвата и транспортирования деталей в автоматах и автоматических линиях.Химическая промышленность применяет вакуумные сушильные аппараты при выпуске синтетических волокон, полиамидов, аминопластов, полиэтилена, органических растворителей. Вакуум-фильтры используются при производстве целлюлозы, бумаги, смазочных масел. В производстве красителей и удобрений применяются кристаллизационные вакуумные аппараты.В электротехнической промышленности вакуумная пропитка как самый экономичный метод широко распространена в производстве трансформаторов, электродвигателей, конденсаторов и кабелей. Повышаются срок службы и надежность при работе в вакууме переключающих электрических аппаратов.Оптическая промышленность при производстве оптических и бытовых зеркал перешла с химического серебрения на вакуумное алюминирование. Просветленная оптика, защитные слои и интерференционные фильтры получают напылением тонких слоев в вакууме.В пищевой промышленности для длительного хранения и кон­сервирования пищевых продуктов используют вакуумную сушку вымораживанием. Расфасовка скоропортящихся продуктов, осуществляемая в вакууме, удлиняет сроки хранения фруктов и овощей. Вакуумное выпаривание применяется при производстве сахара, опреснении морской воды, солеварении. В сельском хозяйстве широко распространены вакуумные доильные аппараты. В быту пылесос стал нашим незаменимым помощником.На транспорте вакуум используется для подачи топлива в карбюраторах, в вакуумных усилителях тормозных систем автомобилей. Имитация космического пространства в условиях земной атмосферы необходима для испытания искусственных спутников и ракет.В медицине вакуум применяется для сохранения гормонов, лечебных сывороток, витаминов, при получении антибиотиков, анатомических и бактериологических препаратов

^ 5. Определите и поясните понятие: ТЕХНОЛОГИЯ.

Технология - комплекс организационных мер, операций и приемов, направленных на изготовление, обслуживание, ремонт и/или эксплуатацию изделия с номинальным качеством и оптимальными затратами.При этом:- под термином изделие следует понимать любой конечный продукт труда (материальный, интеллектуальный, моральный, политический и т. п.);- под термином номинальное качество следует понимать качество прогнозируемое или заранее заданное, например, оговоренное техническим заданием и согласованное техническим предложением;- под термином оптимальные затраты следует понимать минимально возможные затраты не влекущие за собой ухудшение условий труда, санитарных и экологических норм, норм технической и пожарной безопасности, сверхнормативный износ орудий труда, а также финансовых, экономических, политических и пр. рисков.

6. Дайте определение физического вакуума.

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой . Квантовая теория поля утверждает, что, в согласии с принципом неопределённости , в физическом вакууме постоянно рождаются и исчезают виртуальные частицы : происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов . Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов ; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов ) является одной из главных основ инфляционной теории Большого взрыва .

7. Фуллере́н, бакибо́л или букибо́л - молекулярное соединение, принадлежащее классу аллотропных форм углерода (другие - алмаз, карбин и графит) и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода.

Фуллери́т (англ. fullerite) - это молекулярный кристалл, в узлах решётки которого находятся молекулы фуллерена.

Кристаллы фуллерита C60

Крупнокристаллический порошок фуллерита C60 в растровом электронном микроскопе

При нормальных условиях (300 К) молекулы фуллерена образуют гранецентрированную кубическую (ГЦК) кристаллическую решётку. Период такой решётки составляет а = 1,417 нм, средний диаметр молекулы фуллерена С60 составляет 0,708 нм, расстояние между соседними молекулами С60 равно 1,002 нм.[источник не указан 258 дней] Плотность фуллерита составляет 1,7 г/см3, что значительно меньше плотности графита (2,3 г/см3), и, тем более, алмаза (3,5 г/см3). Это связано с тем, что молекулы фуллерена, расположенные в узлах решётки фуллерита, полые.

Логично предположить, что вещество, состоящее из столь удивительных молекул, будет обладать необычными свойствами. Кристалл фуллерита имеет плотность 1,7 г/см3, что значительно меньше плотности графита (2,3 г/см3) и тем более алмаза (3,5 г/см3). Да это и понятно - ведь молекулы фуллеренов полые.

Фуллерит не отличается высокой химической активностью . Молекула C60 сохраняет стабильность в инертной атмосфере аргона вплоть до температур порядка 1200 К. Однако в присутствии кислорода уже при 500 К наблюдается значительное окисление с образованием CO и CO2 . Процесс, продолжающийся несколько часов, приводит к разрушению ГЦК-решетки фуллерита и образованию неупорядоченной структуры, в которой на исходную молекулу C60 приходится 12 атомов кислорода. При этом фуллерены полностью теряют свою форму. При комнатной температуре окисление происходит только при облучении фотонами с энергией 0,5 - 5 эВ. Вспомнив, что энергия фотонов видимого света находится в диапазоне 1,5 - 4 эВ, приходим к выводу: чистый фуллерит необходимо хранить в темноте.

Практический интерес к фуллеренам лежит в разных областях. С точки зрения электронных свойств, фуллерены и их производные в конденсированной фазе можно рассматривать как полупроводники n-типа (с шириной запрещенной зоны порядка 1,5 эВ в случае C60). Они хорошо поглощают излучение в УФ и видимой области. При этом сферическая сопряженная -система фуллеренов обуславливает их высокие электроноакцепторные способности (сродство к электрону C60 составляет 2,7 эВ, во многих высших фуллеренах оно превышает 3 эВ и может быть еще выше в некоторых производных). Все это обуславливает интерес к фуллеренам с точки зрения их применения в фотовольтаике, активно ведется синтез донорно-акцепторных систем на основе фуллеренов для применения в солнечных батареях (известны примеры с КПД 5,5%), фотосенсорах и других устройствах молекулярной электроники. Также широко исследуются, в частности, биомедицинские применения фуллеренов в качестве противомикробных и противовирусных средств, агентов для фотодинамической терапии и т.д.

8. Ва́куум (от лат. vacuum - пустота) - пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлениях значительно ниже атмосферного. На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

9. Алмаз. Алма́з (от араб. ألماس‎‎, ’almās,которое идёт через арабск. из др.-греч. ἀδάμας - «несокрушимый») - минерал, кубическая аллотропная форма углерода. При нормальных условиях метастабилен т.е. может существовать неограниченно долго. В вакууме или в инертном газе при повышенных температурах постепенно переходит в графит

Решетка алмаза очень прочная: атомы углерода находятся в ней по узлам двух кубических решеток с центрированными гранями, очень плотно вставленных одна в другую.

Графит по составу тот же углерод, но структура кристаллической решетки у него не такая, как у алмаза. В графите атомы углерода расположены слоями, внутри которых соединение атомов углерода похоже на пчелиные соты. Эти слои связаны между собой гораздо слабее, чем атомы углерода в каждом слое. Поэтому графит легко расслаивается на чешуйки, и им можно писать. Применяется он для изготовления карандашей, а также в качестве сухой смазки, пригодной для деталей машин, работающих при высокой температуре.

Общеизвестно, что самый твердый в мире материал - алмаз. До настоящего времени так и было, но теперь ученые утверждают, что есть в природе вещество, более твердое, чем алмаз. Редкий минерал формируется во время извержений вулканов.

Редко встречающееся в природе соединение под названием лонсдейлит так же, как и алмаз, состоит из атомов углерода, будучи при этом на 58% более твердым минералом, чем алмаз.

Материал под названием вюрцит азотистого бора оказался тверже обычного алмаза на 18%, а лонсдейлита или гексагонального алмаза - на 58%.

Редкий минерал лонсдейлит формируется при падении на землю метеорита с содержанием графита, а вюрцит азотистого бора рождается во время извержений вулканов.

Если предположения ученых подтвердятся, то самым полезным материалом из трех может оказаться именно он, поскольку при высоких температурах вюрцит азотистого бора остается более прочным. Материал можно будет использовать в режущих и сверлящих инструментах при высоких температурах.

Парадоксально, но факт: своей твердостью вюрцит азотистого бора обязан гибкости атомарных связей. При оказании давления на структуры материала некоторые атомарные связи перестраиваются на 90% для ослабления давления на материал.

Абсолютно новый тип алмазов получился благодаря раскрытию условий образования метеоритных алмазов


Авторы:

ученица 9 класса «А»,

Афанасьева Ирина,

ученица 9 класса «А»,

Татаринцева Анастасия

ученик 11 класса «А»,

Таразанов Артемий;

Научные руководители:

учитель информатики и ИКТ,

Абродин Александр Владимирович

учитель физики,

Шамрина Наталья Максимовна

Микро-, макро- и мега - миры. 4

Микромир. 5

Макромир. 6

Мегамир. 8

СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ. 10

Проблема взаимодействия мега-, макро- и микромира. 10

Большое и малое. 12

Большое и малое в других науках. 14

ПРАКТИЧЕСКАЯ ЧАСТЬ. 18

Метапредметное учебное занятие "Большое и малое» с использованием интерактивной доски. 18

Заключение 20

Список литературы 21

Приложение 1. 22

Приложение 2. 23

Приложение 3. 25






Введение.

Блез Паскаль
Область исследования. Вселенная - вечная загадка. Издавна люди пытались найти объяснение многообразию и причудливости мира. Естественные науки, начав изучение материального мира, с наиболее простых материальных объектов, переходят к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.

Объект исследования . В середине XX века американский астроном Харлоу Шепли предложил интересную пропорцию:

Здесь человек является как бы средним геометрическим между звёздами и атомами. Мы решили рассмотреть этот вопрос с точки зрения физики.

Предмет исследования . В науке выделяют три уровня строения материи: микромир, макромир и мегамир. Определенные их значения и взаимоотношения между ними, по существу, обеспечивают структурную устойчивость нашей Вселенной.

Поэтому проблема, казалось бы, абстрактных мировых констант имеет глобальное мировоззренческое значение. В этом заключается актуальность нашей работы.

Цель проекта : исследовать микро-, макро- и мега миры, найти их особенности и связь.

Задачи проекта формировались следующим образом:


  • изучить и проанализировать теоретический материал;

  • исследовать законы, которым подчиняются большие и малые объекты в физике;

  • проследить связь большого и малого в других науках;

  • написать программу «Большое и малое» для метапредметного учебного занятия ;

  • собрать коллекцию фотографий, в которых прослеживается симметрия микро-, макро-, и мегамиров;

  • составить буклет «Микро-, макро- и мега- миры».

В начале исследования нами была выдвинута гипотеза , что в природе есть симметрия.

Основными методами проекта стала работа с научно-популярной литературой, сравнительный анализ полученной информации, отбор и обобщение информации, популяризация знаний по данной теме.

Экспериментальное оборудование : интерактивная доска.

Работа состоит из введения, теоретической и практической частей, заключения, списка литературы и трех приложений. Объём проектной работы – 20 страниц (без приложений).






ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.

Наука начинается там, где начинают измерять.

Д.И. Менделеев

Микро-, макро- и мега - миры.

Перед началом исследования мы решили изучить теоретический материал, чтобы определить особенности микро, макро и мега миров. Понятно, что границы микро - и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты, построены из микрообъектов и в основе макро- и мега - явлений лежат микроявления. В классической физике не было объективного критерия отличия макро - от микрообъекта. Это отличие ввел в 1897 году немецкий физик-теоретик, М. Планк: если для рассматриваемого объекта минимальным воздействием на него можно пренебречь, то это макрообъекты, если нельзя – это микрообъекты. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. С точки зрения науки важным принципом разделения материального мира на уровни является структура деления по пространственным признакам – размерам. В науку вошли деление по размерам и масштабы большого и малого. Наблюдаемый диапазон размеров и расстояний делят на три части, каждая часть представляет обособленный мир объектов и процессов. Понятия мега-, макро- и микромир на данном этапе развития естествознания являются относительными и удобными для понимания окружающего мира. Эти понятия со временем, вероятно, могут видоизменяться, т.к. они еще мало изучены. Наиболее замечательной характеристикой законов природы является то, что они подчиняются математическим закономерностям с высокой точностью. Чем глубже мы понимаем законы природы, тем сильнее чувствуем, что физический мир как-то исчезает, и мы остаемся лицом к лицу с чистой математикой, т. е. имеем дело лишь с миром математических правил.

Микромир.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10 8 до 10 16 см, а время жизни - от бесконечности до 10 24 с.

История исследований . Древнегреческим философом Демокритом в античности была выдвинута Атомистическая гипотеза строения материи. Благодаря трудам английского учёного Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе. В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов. В 1895 г. Дж. Томсон открыл электрон. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Существовало несколько моделей строения атома.

Далее были выявлены специфические качества микрообъектов, выражающиеся в наличии у них как корпускулярных (частицы), так и световых (волны) свойств. Элементарные частицы – простейшие объекты микромира, взаимодействующие как единое целое. Основные характеристики элементарных частиц: масса, заряд, среднее время жизни, квантовые числа.

Стремительно возрастает количество открытых элементарных частиц. К концу ХХ века физика приблизилась к созданию стройной теоретической системы, объясняющей свойства элементарных частиц. Предложены принципы, позволяющие дать теоретический анализ многообразия частиц, их взаимопревращений, построить единую теорию всех видов взаимодействий.

Макромир.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

История исследований . В истории изучения природы можно выделить два этапа: донаучный и научный, охватывает период от античности до XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Со становления классической механики начинается научный этап изучения природы. Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира - механической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы - научно-теоретического. И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц. Атомы прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Итогом такой картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.

Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира.

Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель X. К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны образуют единую область. Его работы стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физический смысл и стал рассматривать поле как самостоятельную физическую реальность.

После экспериментов Г. Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной математической конструкции, а как объективно существующей физической реальности. В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказались разрушенными представления классической физики о веществе и поле как двух качественно своеобразных видах материи.


Мегамир.

Мегамир (планеты, звезды, галактика) - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15- 20 млрд. световых лет.

История исследований. Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Время существования Вселенной бесконечно, т.е. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется. Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см3.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Американский физик Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры”:

Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия;

Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие;

Фотонная эра. Продолжительность 1млн. лет. Основная доля массы - энергии Вселенной - приходится на фотоны;

Звездная эра. Наступает через 1млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой космологией. В этой модели описывается эволюция Вселенной, начиная с момента 10 45 с после начала расширения. В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого взрыва касается только первоначального этапа порядка 10 30 с, далее между этими моделями принципиальных расхождений в понимании. Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи (туманности), находящейся во вращательном движении вокруг Солнца.

СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ.

Проблема взаимодействия мега-, макро- и микромира .

Живой предмет желая изучить,
Чтоб ясное о нем понятье получить,
Ученый прежде душу изгоняет,
Затем предмет на части расчленяет
И видит их, да жаль: духовная их связь
Тем временем исчезла, унеслась!
Гете
Прежде чем перейти к дальнейшему рассмотрению, нам следует оценить временные и пространственные масштабы Вселенной и как-то связать их с местом и ролью человека в общей картине мира. Попробуем объединить масштабы некоторых известных объектов и процессов в единую диаграмму (рис. 1), где слева представлены характерные времена, а справа - характерные размеры. В нижнем левом углу рисунка указан минимальный масштаб времени, имеющий какой-то физический смысл. Этот интервал времени, равный 10 43 с, называется планковским временем («хрононом»). Он намного короче продолжительности всех известных нам процессов, включая очень краткие процессы физики элементарных частиц (например, время существования самых короткоживущих частиц-резонансов составляет около 10 23 с). Выше по диаграмме указана длительность некоторых известных процессов, вплоть до возраста Вселенной.

Размеры физических объектов на рисунке изменяются от 10 15 м (характерный размер элементарных частиц) до 10 27 м (радиус наблюдаемой Вселенной, приблизительно соответствующий ее возрасту, умноженному на скорость света). Интересно оценить положение, которое на диаграмме занимаем мы, люди. На шкале размеров мы находимся где-то в середине, будучи чрезвычайно крупными по отношению к длине Планка (и превышая на много порядков размеры элементарных частиц), но очень маленькими в масштабах всей Вселенной. С другой стороны, на временной шкале процессов длительность человеческой жизни выглядит совсем неплохо, и ее можно сопоставлять с возрастом Вселенной! Люди (и в особенности поэты) любят жаловаться на эфемерность человеческого существования, однако наше место на временной шкале вовсе не является жалким или ничтожным. Разумеется, нам следует помнить, что все сказанное относится к «логарифмической шкале», однако ее использование представляется совершенно оправданным при рассмотрении столь гигантских диапазонов значений. Говоря другими словами, число человеческих жизней, укладывающихся в возрасте Вселенной, намного меньше, чем число времен Планка (или даже времен жизни элементарных частиц), укладывающихся в продолжительность жизни человека. В сущности, мы являемся довольно стабильными структурами Вселенной. Что же касается пространственных масштабов, то мы действительно находимся где-то в середине шкалы, вследствие чего нам не дано воспринимать в непосредственных ощущениях не очень большие, не очень малые объекты окружающего нас физического мира.

Из протонов и нейтронов образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале размеров тел, то далее следует обычные макротела, планеты и их системы, звезды скопления галактик и метагалактик, то есть можно представить переход от микро-, макро- и мега - как в размерах, так и моделях физических процессов.

Большое и малое.

Быть может, эти электроны -
Миры, где пять материков,
Искусства, знанья, войны, троны
И память сорока веков!
Еще, быть может, каждый атом -
Вселенная, где сто планет.
Там все, что здесь, в объеме сжатом,
Но также то, чего здесь нет.
Валерий Брюсов

Основная причина, по которой мы разделил физические законы на части, относящиеся к «большому» и «малому», заключается в том, что общие закономерности физических процессов в очень большом и очень малом масштабах представляются весьма различными. Ничто не волнует человека так постоянно и глубоко, как тайны времени и пространства. Цель и смысл познания – понять скрытые механизмы природы и наше место во Вселенной.

Американский астроном Шепли предложил интересную пропорцию:

х в этой пропорции – человек, который является как бы средним геометрическим между звёздами и атомами.

По обе стороны от нас неисчерпаемая бесконечность. Мы не можем познать эволюцию звёзд, не изучая атомное ядро. Нам не может быть ясна роль элементарных частиц во Вселенной без знания эволюции звёзд. Мы стоим как бы на перекрёстке дорог, уходящих в бесконечность. На одной дороге время соизмеримо с возрастом Вселенной, на другой оно измеряется исчезающее малыми промежутками. Но нигде не соизмеримо оно с масштабом человеческой жизни. Человек стремится объяснить Вселенную во всех её подробностях, в пределах познаваемого, приемами и способами, посредством наблюдения, опыта и математического вычисления. Нам необходимы такие понятия и методы исследования, с помощью которых могут быть установлены научные факты. А для установления научных фактов в физике вводится объективная количественная характеристика свойств тел и природных процессов, независящая от субъективных ощущений человека. Введение таких понятий является процессом создания особого языка – языка науки физики. Основу языка физики составляют понятия, называемые физическими величинами. А любая физическая величина должна быть измерена, так как без измерений физических величин нет и физики.

И так, давайте попробуем разобраться, что же такое физическая величина. Физическая величина физическое свойство материального объекта, физического явления, процесса, которое может быть охарактеризовано количественно. Значение физической величины - число, вектор, характеризующие эту физическую величину, с указанием единицы измерения, на основе которой эти числа или вектор были определены. Размер физической величины - числа, фигурирующие в значении физической величины. Измерить физическую величину – значит сравнить ее с другой величиной, условно принятой за единицу измерения. Русское слово «величина» имеет несколько иной смысл, чем английское слово “quantity“. В Словаре Ожегова (1990) слово “величина“ трактуется как “размер, объем, протяженность предмета“. Согласно интернетовскому словарю слово “величина“ переводится на английский язык в физике 11-ю словами, из которых наиболее подходят по смыслу 4 слова: quantity (физическое явление, свойство), value (значение), amount (количество), size (размер, объём).

Разберемся подробнее в этих определениях. Возьмем, например, такое свойство, как длина. Она действительно применяется для характеристики многих объектов. В механике – это длина пути, в электричестве – длина проводника, в гидравлике – длина трубы, в теплотехнике – толщина стенки радиатора и т.д. Но значение длины у каждого из перечисленных объектов различно. Длина автомобиля равна нескольким метрам, длина рельсового пути или – многим километрам, а толщину стенки радиатора проще оценивать в миллиметрах. Так что это свойство действительно индивидуально для каждого объекта, хотя природа длины во всех перечисленных примерах одна и та же.

Большое и малое в других науках.

В одном мгновенье видеть вечность,

Огромный мир - в зерне песка,

В единой горсти - бесконечность

И небо - в чашечке цветка.

У. Блейк

Литература.

Малое и большое употребляются в качественном значении: маленький или большой рост, маленькая или большая семья, родня. Малое обычно противопоставляется большому (принцип антитезы). Литература: малый жанр (новелла, рассказ, сказка, басня, эссе, очерк)

Существует множество пословиц и поговорок, использующих противопоставление или сравнение малого с большим. Вспомним некоторые из них:

О малых результатах при больших затратах:


  • Из большой тучи, да малая капля.

  • Стрелять из пушек по воробьям.
О малом наказании за большие грехи:

  • Это ему - как слону дробина (иголка).
Малое в большом:

  • Капля в море.

  • Иголка в стоге сена.
В то же время говорят:

  • Ложка дёгтя испортит бочку мёда.

  • Мышь копной не задавишь.

  • Малая оплошность доводит до большой беды.

  • Малая течь может погубить большой корабль.

  • Из малой искры большой пожар разгорается.

  • От копеечной свечи Москва сгорела.

  • К апля камень долбит (точит) .

Биология.

«Существо человека содержит все, что есть на небе и на земле, существа высшие и существа низшие».
Каббала

За время существования человечества было предложено множество моделей устройства Вселенной. Существуют различные гипотезы, и каждая из них имеет как своих сторонников, так и противников. В современном мире отсутствует единая, общепризнанная и понятная модель Мироздания. В древнем мире, в отличие от нашего, существовала единая модель окружающего мира. Вселенная представлялась нашим предкам в виде огромного человеческого Тела. Попытаемся понять логику, которой придерживались наши «первобытные» предки:


  • Тело состоит из органов

  • Органы – из клеток

  • Клетки – из органоидов

  • Органоиды – из молекул

  • Молекулы – из атомов

  • Атомы – из элементарных частиц. (Рис. 2).
Так устроены наши тела. Предположим, что Вселенная состоит из аналогичных элементов. Тогда, если мы найдем его Атом, то появится шанс отыскать и все остальное. В 1911 году Эрнест Резерфорд предположил, что атом устроен подобно Солнечной системе. На сегодня это отвергнутая модель, Изображение атома на рис. 2 показывает только центральную часть атома. Атом и Солнечная система целиком представляются сейчас иначе. (Рис. 3, 4)

Различия, конечно есть – их не может не быть. Эти объекты находятся абсолютно в разных условиях. Ученые бьются над созданием Единой теории, но никак не могут соединить в Единое целое Макро и микромиры.

Можно предположит, что если Солнечная система - Атом, тогда наша Галактика – Молекула. Сравните рисунки 5 и 6. Только не пытайтесь отыскать полной схожести этих объектов. В мире нет даже двух одинаковых снежинок. Каждый атом, молекула, органоид, клетка, орган и человек имеет свои индивидуальные особенности. Все процессы, происходящие на уровне молекул органических веществ нашего организма, аналогичны процессам, происходящим на уровне галактик. Различие лишь в размерах этих объектов и в масштабе времени. На уровне галактик все процессы происходят гораздо медленнее.

Следующей «деталью» в этой «конструкции» должен быть Органоид. Что представляют собой органоиды? Это различные по строению, размерам и функциям образования, находящиеся внутри клетки. Состоят они из нескольких десятков или сотен разнообразных молекул. Если органоид в нашей клетке аналогичен Органоиду в макромире, тогда нам следует искать в Космосе скопления различных галактик. Такие скопления действительно имеются, и астрономы называют их группами или семействами галактик. Наша галактика, Млечный путь, входит в Местное семейство галактик, которое включает в себя две подгруппы:
1. Подгруппу Млечного пути (справа)
2. Подгруппу Туманности Андромеды (слева) (Рис. 8).

Не стоит обращать внимание на некоторое несоответствие в пространственном расположении молекул рибосомы (Рис. 8) и галактик в Местной группе (Рис. 9). Молекулы, как и галактики, постоянно перемещаются в определенном объеме. Рибосома является органоидом без оболочки (мембраны), поэтому мы не видим в окружающем нас космическом пространстве «плотной» стены галактик. Впрочем, мы не видим и оболочек Космических Клеток.

Процессы, происходящие в наших органоидах, аналогичны процессам, происходящим в группах и семействах галактик. Но в Космосе они совершаются гораздо медленнее, чем у нас. То, что воспринимается в космосе как Секунда - для нас тянется почти десять наших лет!

Следующим объектом поисков была Космическая Клетка. В нашем теле имеется множество различных по размерам, строению и функциям клеток. Но почти все они имеют нечто общее в своей организации. Они состоят из ядра, цитоплазмы, органоидов и мембраны. Аналогичные образования имеются и в Космосе.

Скоплений галактик, похожих на наше, а также других по форме и размеру – великое множество. Но все они группируются вокруг еще более грандиозного скопления галактик с центром в Созвездии Девы. Именно там находится Ядро Космической Клетки. Астрономы, подобные объединения галактик, называют Сверхскоплениями. На сегодня открыто более пятидесяти таких Сверхскоплений галактик, являющихся такими Клетками. Они располагаются вокруг нашего Сверхскопления галактик - равномерно во все стороны.

За пределы этих соседних Сверхскоплений галактик современные телескопы пока не проникают. Но, используя широко применяемый в древности Закон Аналогии, можно предположить, что все эти Сверхскопления галактик (Клетки) составляют какой-то Орган, а совокупность Органов составляет само Тело.

Именно поэтому многие учёные выдвигают гипотезы, что Вселенная является не только подобием тела человека, но и каждый человек является подобием целой Вселенной.

ПРАКТИЧЕСКАЯ ЧАСТЬ.

Научно-техническое творчество молодёжи –

Путь к обществу, основанному на знаниях.
Школьник понимает физический опыт

только тогда хорошо, когда он его делает сам.

Но еще лучше он понимает его, если сам делает

прибор для эксперимента.

П.Л.Капица

Метапредметное учебное занятие "Большое и малое» с использованием интерактивной доски.

Скажи мне – и я забуду.

Покажи мне – и я запомню.

Дай мне действовать самому – и я научусь.

Китайская народная мудрость
Часто низкая успеваемость объясняется невнимательностью, причина которой – в незаинтересованности ученика. Используя интерактивную доску, у учителей появляется возможность привлечь и успешно использовать внимание класса. Когда на доске появляется текст или изображение, то у ученика стимулируется одновременно несколько видов памяти. Мы можем максимально эффективно организовать постоянную работу учащегося в электронном виде. Это значительно экономит время, стимулирует развитие мыслительной и творческой активности, включает в работу всех учащихся, находящихся в классе.

Интерфейс программы очень прост, поэтому разобраться в ней не составит никакого труда.

Программа состоит из двух частей: вспомогательного материала и сборника заданий для учеников.



В разделе программы

«Вспомогательные материалы»

сможете найти таблицы величин; весы, которые смогут помочь детям разобраться с темой «показатель степени»; снимки и схемы физических тел, похожих по форме, но сильно отличающихся друг от друга по размерам.



В сборнике заданий Вы сможете проверить учащихся на знание темы «Большое и малое». Здесь присутствуют 3 вида заданий: составление таблицы (перемещение строк в ячейки); вопросы, связанные и массами тел (в каком положении установятся весы), упорядочивание величин. Программа может сама проверить правильность выполнения заданий и выдать соответствующее сообщение на экран.

Заключение

Как мир меняется! И как я сам меняюсь!
Лишь именем одним я называюсь.
На самом деле то, что именуют мной, -
Не я один. Нас много. Я - живой...
Звено в звено и форма в форму...
Н. Заболоцкий

Результаты, полученные в ходе выполнения работы , показали, что господство симметрии в природе, прежде всего, объясняется силой тяготения, действующей во всей Вселенной. Действием тяготения или отсутствием такового объясняется то, что и Космические тела, плывущие во Вселенной, и Микроорганизмы, взвешенные в воде, обладают высшей Формой симметрии - сферической (при любом повороте относительно центра фигура совпадает сама с собой). Все организмы, растущие в прикрепленном состоянии или живущие на дне океана, т. е. организмы, для которых направление силы тяжести является решающим, имеют ось симметрии (множество всевозможных поворотов вокруг центра сужается до множества всех поворотов вокруг вертикальной оси). Более того, поскольку эта сила действует повсюду во Вселенной, то и предполагаемые космические пришельцы не могут быть безудержно чудовищами, как их порой изображают, а обязательно должны быть симметричными.

Практической частью нашей работы стала программа «Большое и малое» для метапредметного учебного занятия с использованием интерактивной доски . Используя интерактивную доску, мы можем максимально эффективно организовать постоянную работу учащегося в электронном виде. Это значительно экономит время, стимулирует развитие мыслительной и творческой активности, включает в работу всех учащихся, находящихся в классе.

Работа содержит три приложения : 1) Программу для метапредметного учебного занятия по физике с использованием интерактивной доски; 2) Буклет «Учебное занятия по физике «Большое и малое»; 3) Буклет с уникальными фотографиями «Микро-, макро- и мега- миры» .

Список литературы


  1. Ващекин Н.П., Лось В.А., Урсул А.Д. «Концепции современного естествознания», М.: МГУК,2000.

  2. Горелов А.А. «Концепции современного естествознания », М.: Высшее образование, 2006.

  3. Козлов Ф.В. Справочник по радиационной безопасности.- М.: Энергоатом – издат., 1991.

  4. Криксунов Е.А., Пасечник В.В., Сидорин А.П., Экология, М., Издательский дом "Дрофа", 1995.

  5. Поннамперума С. «Происхождение жизни», М., Мир, 1999 г.

  6. Сивинцев Ю.В. Радиация и человек. - М.: Знание, 1987.

  7. Хотунцев Ю.М. Экология и экологическая безопасность. - М.: АСADEMA, 2002.

  8. Горелов А.А. Концепции современного естествознания. – М.: Центр,1998.

  9. Горбачев В.В. Концепции современного естествознания: Учеб. пособ. для студентов вузов. – М., 2005. – 672 с.

  10. Карпенков С.Х. Концепции современного естествознания - М.: 1997.

  11. Квасова И.И. Учебное пособие по курсу "Введение в философию".М., 1990.

  12. Лавриенко В.Н. Концепции современного естествознания - М.: ЮНИТИ.

  13. Л. Ш и ф ф, Сб. "Новейшие проблемы гравитации", М., 1961.

  14. Я. Б. Зельдович, Вопр. космогонии, т. IX, М., 1963.

  15. Б. Понтекорво, Я. Смородинский, ЖЭТФ, 41, 239, 1961.

  16. Б. Понтекорво, Вопр. космогонии, т. IX, М., 1963.

  17. В. Паули, Сб. "Нильс Бор и развитие физики", М., 1958.

  18. Р. Иост. Сб. "Теоретическая физика 20 века", М., 1962.

  19. Р. Маршак, Э. Судершан, Введение в физику элементарных частиц, М. 1962

  20. Е. Горшунова, А. Таразанов, И. Афанасьева «Большое космическое путешествие», 2011

Приложение 1.

Рабочий лист к метапредметному занятию по теме «Большое и малое»

с использованием интерактивной доски
Не огромность мира звёзд вызывает восхищение,

а человек, который измерил его.

Блез Паскаль

Физическая величина - _____________________________________________________

_________________________________________________________________________
Измерить физическую величину - ____________________________________________

__________________________________________________________________________


Приложение 2.


Диапазон расстояний во Вселенной

м

расстояние

10 27

границы Вселенной

10 24

ближайшая Галактика

10 18

ближайшая звезда

10 13

расстояние Земля - Солнце

10 9

расстояние Земля - Луна

1

рост человека

10 -3

крупинка соли

10 -10

радиус атома водорода

10 -15

радиус атомного ядра

Диапазон временных интервалов во Вселенной


с

время

10 18

возраст Вселенной

10 12

возраст египетских пирамид

10 9

среднее время жизни человека

10 7

один год

10 3

свет идёт от Солнца до Земли

1

интервал между двумя ударами сердца

10 -6

период колебаний радиоволн

10 -15

период колебаний атома

10 -24

свет проходит расстояние, равное размеру атомного ядра

Диапазон масс во Вселенной


кг

масса

10 50

Вселенная

10 30

Солнце

10 25

Земля

10 7

океанский корабль

10 2

человек

10 -13

капелька масла

10 -23

атом урана

10 -26

протон

10 -30

электрон

Рис. 1. Характерное время и размеры некоторых объектов и процессов Вселенной.

Приложение 3.



. Человек. . Органы. . Клетки. . . . Органоиды. Молекулы. . Атом. . . Частицы атома

Рис 2. Строение тела человека


Как говорится - «найдите различия». Дело даже не во внешнем сходстве этих объектов, хотя оно и «на лицо». Раньше мы электроны сравнивали с планетами, а надо было с кометами.


Рис 7. Строение Вселенной.









Рис. 12 Нервная ткань

Рис. 13 Ранняя Солнечная Система





Рис. 14 Фотографии Вселенной с телескопа Hubble

Рис. 15 Этапы развития клетки простейших










Рис. 16 Схематичное изображение клетки

Рис. 17 Строение Земли

Рис.18 Земля


Приложение 4.










Метапредметное учебное занятие по физике

Неделя физики и химии

Неделя физики и химии

Метапредметное учебное занятие по физике, 8Б

Метапредметное учебное занятие по физике

ФОТООТЧЁТ


ФОТООТЧЁТ



НТТМ ЗАО 2012

Всероссийский Фестиваль науки 2011

Стенд «Микро-, макро- и мега- миры»



«Большое космическое путешествие"




Стенд «Большое космическое путешествие»

Наши буклеты.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблю­даемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечно­сти до 10 -24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соот­носима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро - и мегамиры теснейшим образом взаи­мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритомв античностибыла выдвинутаАтомистическая гипотеза строения материи, позже, вXVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за еди­ницу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свой­ства атома. В XIX в. Д. И. Менделеев построил систему хими­ческих элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элемен­тов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».


В 1911 г. Э. Резерфорд предложил модель атома, которая на­поминала солнечную систему: в центре находится атомное яд­ро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрица­тельный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электриче­ский заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характе­ристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, ос­нованную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколькостационарных со­стояний (говоря языком планетарной модели, несколько ста­ционарных орбит) электронов, двигаясь по которым электрон может существовать,не излучая;

2) припереходе электрона из одного стационарного состоя­ния в другое атомизлучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основа­нии представления об орбитах точечных электронов принципи­ально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это по­следнее усилие описать структуру атома на основе классиче­ской физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь час­тично. Ответы на эти вопросы были получены в результате раз­вития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макро­мире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир . В истории изучения природы можно выделить два этапа: донаучный и научный

Донаучный, илинатурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.

Со становления классической механики начинается научный этап изучения природы.

Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать нужно с концепций классической физики.

Формирование научных взглядов на строение материи от­носится к XVI в., когда Г. Галилеем была заложена основа пер­вой в истории науки физической картины мира - механиче­ской. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методо­логию нового способа описания природы - научно-теоре­тического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото­рые становились предметом научного исследования. Галилей писал: «Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество и более или менее быстрого движения для того, чтобы объяснить возникновение вкуса, запаха и звука » 1 .

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Нью­тоном и его последователями, сложилась дискретная (корпус­кулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо­лютно постоянно и всегда пребывает в покое. Время представ­лялось как величина, не зависящая ни от пространства, ни от материи.

Движение рассматривалось как перемещение в пространст­ве по непрерывным траекториям в соответствии с законами механики.

Итогом ньютоновской картины мира явился образ Вселен­ной как гигантского и полностью детерминированного меха­низма, где события и процессы являют собой цепь взаимозави­симых причин и следствий.

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Наряду с механической корпускулярной теорией, осуществ­лялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории, сформу­лированной X. Гюйгенсом. Волновая теория устанавливала ана­логию между распространением света и движением волн на по­верхности воды или звуковых волн в воздухе. В ней предпола­галось наличие упругой среды, заполняющей все пространство, - светоносного эфира. Исхо­дя из волновой теории X. Гюйгенс успешно объяснил отраже­ние и преломление света.

Другой областью физики, где механические модели оказа­лись неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и по­ложили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоиспы­татель X. К. Эрстед, который впервые заметил магнитное дей­ствие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное измене­ние в магнитных полях создает электрический ток.

М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его рабо­ты стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физиче­ский смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии » 2 .

Исхо­дя из своих исследований, Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущ­ность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж. К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцем в 1888 г.

После экспериментов Г. Герца в физике окончательно ут­вердилось понятие поля не в качестве вспомогательной матема­тической конструкции, а как объективно существующей физи­ческой реальности. Был открыт качественно новый, своеобразный вид материи.

Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказа­лись разрушенными представления классической физики о ве­ществе и поле как двух качественно своеобразных видах материи.

Мегамир . Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высо­кого порядка -Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15- 20 млрд. световых лет.

Понятия «Вселенная» и «Метагалактика» - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие«Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» - тот же мир, но с точки зрения его структуры - как упорядоченную систему га­лактик.

Строение и эволюция Вселенной изучаютсякосмологией. Космология как раздел естествознания, находится на своеоб­разном стыке науки, религии и философии. В основе космо­логических моделей Вселенной лежат определенные мировоз­зренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти та­кой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Современные космологические модели Вселенной основы­ваются на общей теории относительности А. Эйнштейна, со­гласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свой­ства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселен­ной А. Эйнштейна мировое пространство однородно и изо­тропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсаль­ным космологическим отталкиванием.

Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1922г. русский математик и геофизик А.А Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнения Эйнштейна, описывающее Вселенную с “расширяющимся” пространством.

Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятие начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется.

Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10 -12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 10 96 г/см 3 . В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры” 3

Эра адронов . Тяжелые частицы, вступающие в сильные взаи­модействия.

Эра лептонов. Легкие частицы, вступающие в электромагнит­ное взаимодействие.

Фотонная эра. Продолжительность 1 млн. лет. Основная до­ля массы - энергии Вселенной - приходится на фотоны.

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой кос­мологией. В этой модели описывается эволюция Вселенной на­чиная с момента 10 -45 с после начала расширения.

Сторонники инфляционной модели видят соответствие ме­жду этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии 4 .

В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10 -50 см

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспо­ненциальному закону. В этот период создавалось само про­странство и время Вселенной. За период инфляционной стадии продолжительностью 10 -34 . Вселенная раздулась от невообра­зимо малых квантовых размеров 10 -33 до невообразимо больших 10 1000000 см, что на много порядков превосходит раз­мер наблюдаемой Вселенной - 10 28 см. Весь этот первоначаль­ный период во Вселенной не было ни вещества, ни излучения.

Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осве­тившего космос.

Этап отделения вещества от излучения: оставшееся после ан­нигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от веще­ства излучение и составляет современный реликтовый фон, теоретически предсказанный Г. А. Гамовым и эксперименталь­но обнаруженный в 1965 г.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все бо­лее сложных структур - атомов (первоначально атомов водоро­да), галактик, звезд, планет, синтезу тяжелых элементов в не­драх звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения - человека.

Различие между этапами эволюции Вселенной в инфляци­онной модели и модели Большого взрыва касается только пер­воначального этапа порядка 10 -30 с, далее между этими моделя­ми принципиальных расхождений в понимании этапов косми­ческой эволюции нет.

Пока же эти модели с помощью знаний и фантазии можно рассчитывать на компьютере, а вопрос остается открытым.

Самая большая трудность для ученых возникает при объяс­нении причин космической эволюции. Если отбросить частно­сти, то можно выделить две основные концепции, объясняющие эволюцию Вселенной: концепцию самоорганизации и концепцию креационизма .

Для концепции самоорганизации материальная Вселенная яв­ляется единственной реальностью, и никакой другой реально­сти помимо нее не существует. Эволюция Вселенной описыва­ется в терминах самоорганизации: идет самопроизвольное упо­рядочивание систем в направлении становления все более сложных структур. Динамичный хаос порождает порядок.

В рамках концепции креационизма , т.е. творения, эволюция Вселенной связывается с реализацией

программы, определяемой реальностью более высокого порядка, чем материальный мир. Сторонники креационизма обращают внимание на существова­ние во Вселенной направленного номогенца - развития от простых систем ко все более сложным и информационно ем­ким, в ходе которого создавались условия для возникновения жизни и человека. В качестве дополнительного аргумента при­влекаетсяантропный принцип, сформулированный английскими астрофизиками Б. Карром и Риссом.

Среди современных физиков – теоретиков имеются сторонники, как концепции самоорганизации, так и концепции креационизма. Последние признают, что развитие фундаментальной теоретической физики делает насущной необходимостью разработку единой научно – технической картины мира, синтезирующей все достижения в области знания и веры.

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами.

Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Существуют огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено.

Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические , спиральные , неправильные .

Эллиптические галактики – обладают пространственной формой эллипсоида с разной степенью сжатия они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра.

Спиральные галактики – представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика – млечный путь.

Неправильные галактики – не обладают выраженной формой, в них отсутствует центральное ядро.

Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики .

В ядре галактики сосредоточенны самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики.

Звезды и туманности в пределах галактики движутся довольно сложным образом вместе с галактикой они принимают участие в расширении Вселенной, кроме того, они участвуют во вращении галактики вокруг оси.

Звезды. На современном этапе эволюции Вселенной веще­ство в ней находится преимущественно взвездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы.

Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселен­ной, до сотен тысяч - самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, бла­годаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Ос­новная эволюция вещества во Вселенной происходила и проис­ходит в недрах звезд. Именно там находится тот «плавильный тигель», который обусловил химическую эволюцию вещества во Вселенной.

На завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы - так называемые кратные сис­темы состоят из двух, трех, четырех, пяти и больше звезд, об­ращающихся вокруг общего центра тяжести.

Звезды объединены также в еще большие группы - звезд­ные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления насчи­тывают несколько сотен отдельных звезд, шаровые скопления - многие сотни тысяч.

Ассоциации, или скопления звезд, также не являются неиз­менными и вечно существующими. Через определенное коли­чество времени, исчисляемое миллионами лет, они рассеивают­ся силами галактического вращения.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спут­ников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вра­щаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет (их лун) вращается в том же направлении и в большинстве слу­чаев в экваториальной плоскости своей планеты. Солнце, пла­неты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: ка­ждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце - звезда второго (или еще более позднего) поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливав­шихся в газово-пылевых облаках. Это обстоятельство дает ос­нование назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории планетообразования.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца об­разовалась в результате действия сил притяжения и отталкива­ния между частицами рассеянной материи (туманности), нахо­дящейся во вращательном движении вокруг Солнца.

Началом следующего этапа в развитии взглядов на образо­вание Солнечной системы послужила гипотеза английского фи­зика и астрофизика Дж. X. Джинса. Он предположил, что ко­гда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразо­валась в планеты.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнит­ные. Эта идея была выдвинута шведским физиком и астрофи­зиком X. Альфвеном и английским астрофизиком Ф. Хойлом. В соответствии с современными представлениями, первона­чальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались не­большие части этого облака. Гравитационная сила стала при­тягивать остатки газа к образовавшейся звезде - Солнцу, но его магнитное поле остановило падающий газ на различных расстояниях - как раз там, где находятся планеты. Гравитаци­онная и магнитные силы повлияли на концентрацию и сгуще­ние падающего газа, и в результате образовались планеты. Ко­гда возникли самые крупные планеты, тот же процесс повто­рился в меньших масштабах, создав, таким образом, системы спутников.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невоз­можно. Во всех существующих теориях имеются противоречия и неясные места.

В настоящее время в области фундаментальной теоретиче­ской физики разрабатываются концепции, согласно которым объ­ективно существующий мир не исчерпывается материальным ми­ром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выво­ду: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира.

Система природа-биосфера- человек и ее противоречия.

Человек, общество неразрывно связаны с природой и не в состоянии существовать и развиваться вне ее,в первую очередь без непосредственно окружающей его природной среды. Связь человека с окружающей средой особенно ярко выражена в сфере материального производства. Природные богатства служат естественной основой материального производства и жизни общества в целом. Вне природы и использования созданных на ее основе предметов человек не существует.

Наиболее тесно, человек связан с такими составляющими природы, как географическая и окружающая среда.

Географическая среда – та часть природы (растительный и животный мир, вода, почва, атмосфера Земли),которая вовлечена в сферу жизни человека, в первую очередь в производственный процесс. от особенностей географической среды зависят конкретные направления человеческой деятельности, развитие тех или иных отраслей производства в различных странах и континентах. Неблагоприяные природные условия тормозили общественное развитие. Поэтому древние цивилизации возникали первоначально именно на берегах Нила, Ефрата, Тигра, Ганга, Инда и т.д.

Если бы человек находил все необходимые ему средства к существованию в природе в готовом виде, не было бы стимулов для совершенствования производства и для собственного развития. Не только наличие тех или иных природных условий для производства, но и их недостаток также оказывал ускоряющее влияние на развитие общества. Именно наличие разнообразных природных условий является наиболее благоприятным фактором развития человека и общества.

Окружающая среда включает, помимо поверхности Земли и ее недр, часть Солнечной системы, которая попадает или может попасть в сферу деятельности человека,а также созданный им материальный мир. В структуре окружающей среды выделяют естественную и искусственную среды обитания.

Естественная среда обитания включает неживую и живую части природы – геосферу и биосферу. Она существует и развивается без вмешательства человека, естественным образом. Однако в ход эволюции человек постепенно все больше осваивает естественную среду обитания. Первоначально это было лишь простое потребление естественных богатств. Затем человек начал использовать и естественные источники средств жизни, преобразуя их в ходе своей практической деятельности.

В результате была создана искусственная среда обитания – все то,что специально сделано человеком: разнообразие предметов материальной и духовной культуры, преобразованные ландшафты, а также выведенные в процессе селекции и одомашнивания растения и животные. С развитием общества роль и значение для человека искусственной среды обитания непрерывно возрастают.

В результате преобразования человеком естественной среды обитания можно говорить о существовании нового ее состояния – техносфере.

Техносфера – совокупность технических устройств и систем вместе с областью технической деятельности человека. Ее структура достаточно сложна, включает техногенное вещество, технические системы, живое вещество, верхнюю часть земной коры, атмосферу, гидросферу. С началом эры космических полетов техносфера вышла далеко за пределы биосферы и охватывает уже околоземный космос.

Ноосфера: понятие и основные компоненты.

Термин «ноосфера» (от греч. Noos- разум) переводится как сфера господства разума. Впервые этот термин ввел Леруа в 1927 г. в месте с Тейяром де Шарденом он рассматривал ноосферу как некое идеальное образование, вне биосферную оболочку мысли, окружающую Землю.

Учение о ноосфере не носит пока законченного канонического характера.

Вернадский начал развивать учение о ноосфере с начала 30-х г.г. после детальной разработки учения о биосфере. Он употребляет понятие ноосфера в разных смыслах: -как состояние планеты, когда человек становится крупнейшей преобразующей геологической силой; -как область активного проявления научной мысли; -как главный фактор перестройки и изменения биосферы.

Он впервые осознал и попытался осуществить синтез естественных и общественных наук при изучении проблем глобальной деятельности человека, активно перестраивающего окружающую среду.

Общее в понимании ноосферы у Шардена и Вернадского: 1)появление человеческого разума ведет к изменению самой биосферы; 2)человеческая мысль и деятельность становятся геологическим фактором, они преобразуют весь поверхностный слой Земли. 3)преобразование биосферы является неизбежным и необратимым. К этим выводам независимо друг от друга они пришли в начале 30х гг.

Различия в концепциях Вернадского и Шардена: У Шардена 1)движущей силой эволюции – разум, сознание независящее от отдельного человека; 2)ноосфера – мыслящий пласт Земли, который образуется поверх биосферы. У Вернадского 1)движущей силой эволюции является сама природа, а мысль, разум является результатом эволюции природы. 2)ноосфера не возвышается над биосферой, а биосфера переходит в ноосферу, что приводит к улучшению биосферы.

В настоящее время под ноосферой понимается сфера взаимодействия человека и природы, в пределах которой разумная человеческая деятельность становится главным определяющим фактором развития. В структуре ноосферы можно выделить в качестве составляющих человечество, общественные системы, совокупность научных знаний, сумму техники и технологий в единстве с биосферой. Гармоничная взаимосвязь всех составляющих структуры есть основа устойчивого существования и развития ноосферы.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».

В 1911 г. Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.